Реферат: Основные теоремы теории электрических цепей
Алгебраическая сумма мгновенных мощностей, развиваемых источниками напряжения и тока:
.
Потребляемая мощность с учетом законов Ома:
В соответствии с балансом мощностей:
.
Следует отметить, что при определении произведение ei , берется со знаком "+", если направления задающего напряжения e и тока i совпадают с друг другом, и со знаком "–" в противном случае. Аналогичное правило знаков для источников тока: если напряжение на зажимах источника совпадает с направлением задающего тока i 0 , берется знак "+", а если напряжение направлено навстречу задающему току — знак "–". Баланс мощности выражает не что иное, как закон сохранения энергии в электрической цепи.
Принцип дуальности
Сопоставление уравнений, составленных по первому и второму законам Кирхгофа, а также соотношений для последовательного и параллельного соединения элементов свидетельствуют о существовании таких цепей, у которых токи в одной цепи изменяются как напряжения в другой цепи. Уравнения таких цепей сходны по форме и отличаются лишь обозначениями. Эти цепи называют дуальными.
Дуальными являются, например, цепи, схемы которых изображены на рисунке 1.9, поскольку напряжение в одной схеме изменяется по такому же закону, как ток в другой схеме.
Рис. 1.9.
Действительно, для схемы рис. 1.9, а согласно первому закону Кирхгофа:
или .
Учитывая соотношения между напряжением и током для элементов:
и ,
получим уравнение для напряжения цепи:
(1)
Для схемы рис. 1.9, б по второму закону Кирхгофа или . Учитывая соотношения и получим уравнение для тока в цепи:
(2)
Уравнения (1) и (2) сходны по форме. Эти обыкновенные линейные неоднородные дифференциальные уравнения 1-го порядка. Второе уравнение получается из первого, если заменить u на i , С на L , G наR , i 0 на e .
Приведенные пары величин также называются дуальными величинами.
Таким образом, дуальными являются напряжение и ток, емкость и индуктивность, проводимость и сопротивление, источник тока и источник напряжения. Параллельному соединению элементов исходной схемы соответствует последовательное соединение дуальных элементов в дуальной цепи.
Дуальные величины приведены в таблице 1.1.
Таблица 1.1.
1-я группа величин | 2-я группа величин |
ток | напряжение |
напряжение | ток |
проводимость | сопротивление |
емкость | индуктивность |
индуктивность | емкость |
задающий ток | Э. Д. С. |
Следовательно, чтобы получить цепь, дуальную заданной, необходимо в простейших случаях параллельное соединение элементов заменить последовательным, элемент проводимости – сопротивлением, емкость – индуктивностью, индуктивность – емкостью, источник тока – источником напряжения.
Для цепи, схема которой изображена на рис. 1.10, а, дуальной будет цепь – рис. 1.10, б.
Рис. 1.10.
Уравнение для напряжения в первой цепи и уравнение для тока во второй цепи будут отличаться лишь обозначениями. Если получено решение одного из уравнений, то в новых дуальных обозначениях это же будет решением второго уравнения.