Реферат: Основы графической визуализации вычислений

Пример:

>> [X,Y]=meshgrid(1:4, 13:17)

X =

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

Y =

13 13 13 13

14 14 14 14

15 15 15 15

16 16 16 16

17 17 17 17

Приведем еще один пример применения функции meshgrid:


>> [X,Y]=meshgrid(-2:0.2:2, -2:0.2:2);

Такой вызов функции позволяет задать опорную плоскость для построения трехмерной поверхности при изменении x и y от-2 до 2с шагом 0.2.

Функция ndgridявляется многомерным аналогом функции meshgrid:

· [Х1,Х2,ХЗ,...] = ndgrid(x1,x2,x3....) — преобразует область, заданную векторами x1,.x,x3..., в массивы Х1,Х2,ХЗ..., которые могут быть использованы для вычисления функций нескольких переменных и многомерной интерполяции, i-я размерность выходного массива Xi является копией вектора xi;

[XI,Х2....] = ndgrid(x) - аналогична [XI,Х2....] = ndgrid(x,x,...).

Пример применения функции ndgridпредставлен ниже:

>> [X1,X2]=ndgrid(-2:0.2:2,-2:0.2:2);

>> Z=X1.*exp(-X1.^2-X2.^2);

>> mesh(Z)

Построение графиков поверхностей

Команда plot3(...) является аналогом команды plot(...), но относится к функции двух переменных z(x, у). Она строит аксонометрическое изображение трехмерных поверхностей и представлена следующими формами:

· plot3(x, y, z) — строит массив точек, представленных векторами x, у и z соединяя их отрезками прямых. Эта команда имеет ограниченное применение;

· plot3(X,Y,Z), где X, Y и Z— три матрицы одинакового размера, строит точки с координатами X(i,:),Y(i,:) и Z(i,:) и соединяет их отрезками прямых.

Ниже дан пример построения трехмерной поверхности, описываемой функцией

К-во Просмотров: 683
Бесплатно скачать Реферат: Основы графической визуализации вычислений