Реферат: Основы расчета надежности технических систем по надежности их элементов

Т0 =
=(1/l1 +1/l2 +…+1/ln )-(1/(l1 +l2 )+ 1/(l1 +l3 )+…)+ (4.5.12)
+(1/(l1 +l2 +l3 )+1/(l1 +l2 +l4 )+…)+(-1)n+1 ´.

В случае, когда интенсивности отказов всех элементов одинаковы, выражение (4.5.12) принимает вид

Т0 = . (4.5.13)

Среднее время работы до отказа также можно получить, интегрируя уравнение (4.5.7) в интервале [0,¥]

Пример 4.5.6. Предположим, что два одинаковых вентилятора в системе очистки отходящих газов работают параллельно, причем если один из них выходит из строя, то другой способен работать при полной системной нагрузке без изменения своих надежностных характеристик.

Требуется найти безотказность системы в течение 400ч (продолжительность выполнения задания) при условии, что интенсивности отказов двигателей вентиляторов постоянны и равны l=0,0005ч-1 , отказы двигателей статистически независимы и оба вентилятора начинают работать в момент времени t=0.

Решение. В случае идентичных элементов формула (4.5.11) принимает вид
Р(t) = 2еxp(-lt) - еxp(-2lt).
Поскольку l = 0,0005 ч-1 и t = 400 ч, то
Р(400) = 2еxp(-0,0005´400) - еxp(-2´0,0005´400)=0,9671.
Среднюю наработку на отказ находим, используя (4.5.13):
Т0 = 1/l(1/1 + 1/2) = 1/l´3/2 = 1,5/0,0005 = 3000 ч.

Способы преобразования сложных структур

Относительная простота расчетов надежности, основанных на использовании параллельно-последовательных структур, делают их самыми распространенными в инженерной практике. Однако не всегда условие работоспособности можно непосредственно представить параллельно-последовательной структурой. В этом случае можно сложную структуру заменить ее эквивалентной параллельно-последовательной структурой. К таким преобразованиям относится:
- преобразование с эквивалентной заменой треугольника на звезду и обратно;
- разложение сложной структуры по базовому элементу.

Существо способа преобразования с помощью эквивалентной замены треугольника на звезду и обратно заключается в том, что узел сложной конфигурации заменяется на узел другой, более простой конфигурации, но при этом подбираются такие характеристики нового узла, что надежности преобразуемой цепи сохранялись прежними.

Пусть, например, требуется заменить треугольник (рис. 4.5.7,а) звездой (рис. 4.5.7,б) при условии, что вероятность отказа элемента a равна q13 , элемента b равна q12 , элемента c - q23 . Переход к соединению звездой не должен изменить надежность цепей 1-2, 1-3, 2-3. Поэтому значение вероятностей отказов элементов звезды q1 , q2 , q3 должны удовлетворять следующим равенствам:
(4.5.14)

Рис. 4.5.7. Преобразование "треугольник - звезда"

Если пренебречь произведениями вида qi qj ; qi qj qk , то в результате решения системы уравнения (4.5.14) можно записать:
q1 =q12 q31 ; q2 =q23 q12 ; q3 =q31 q23 . (4.5.15)

Для обратного преобразования звезды в треугольник
q12 = ; q23 = ; q31 = . (4.5.16)

Пример 4.5.7. Определить вероятность безотказной работы устройства, структурная схема которого изображена на рис. 4.5.3,б, если известно, что вероятности безотказной работы каждого из элементов схемы равны 0,9, а вероятности отказов равны 0,1.

Решение.
1. Преобразуем соединение элементов 1,2,5 в треугольник (рис. 4.5.8,а), в звезду (рис. 4.5.8, б).

Рис. 4.5.8. К примеру преобразования структуры
2. Определим эквивалентные значения вероятности отказов для новых элементов a, b, c
qa =q1 q2 =0,1´0,1 = 0,01;
qb =q1 q5 =0,1´0,1 = 0,01;
qс =q2 q5 =0,1´0,1 = 0,01.
3. Определим значения вероятности безотказного состояния элементов эквивалентной схемы (рис. 4.5.8,б)
pa = pb = pc = 0,99.
4. Определим вероятность безотказной работы эквивалентного устройства (рис. 4.5.9):
Р = рab р3 + рc р4 - рb р3 рc р4 ) =
= 0,99(0,99´0,9+0,99´0,9 - 0,99´0,9´0,99´0,9) = 0,978.

Рис. 4.5.9. Преобразованная структура

Способ преобразования с помощью разложения сложной структуры по некоторому базовому элементу основан на использовании теоремы о сумме вероятностей несовместных событий. В сложной структуре выбирают базовый элемент (или группу базовых элементов) и делаются следующие допущения:
- базовый элемент находится в работоспособном состоянии;
- базовый элемент находится в отказавшем состоянии.

Для этих случаев, представляющих собой два несовместных события, исходная структура преобразовывается в две новые схемы. В первой из них вместо базового элемента ставится "короткое замыкание" цепи, а во второй - разрыв. Вероятности безотказной работы каждой из полученных простых структур вычисляются и умножаются: первая - на вероятность безотказного состояния базового элемента, вторая - на вероятность отказа базового элемента. Полученные произведения складываются. Сумма равна искомой вероятности безотказной работы сложной структуры.

Пример 4.5.8. Решить предыдущий пример методом разложения сложной структуры.

Решение.

1. В качестве базового элемента примем элемент 5 (рис. 4.5.3,б).

2. Закоротим базовый элемент, т.е. сделаем допущение об абсолютной его проводимости. Присоединим к полученной структуре последовательно базовый элемент с характеристикой его надежности р5 . В результате вместо исходной структуры получим новую структуру (рис. 4.5.10,а).

Рис. 4.5.10. Пример разложения мостиковой структуры по базовому элементу

3. Произведем обрыв базового элемента, т.е. сделаем предположение об его абсолютной ненадежности (непроводимости). К полученной структуре присоединим последовательно базовый элемент с характеристикой его ненадежности (1-р5 ). В результате получим структуру (рис. 4.5.10,б).

4. Искомая вероятность равна сумме вероятностей структур (рис. 4.5.10,а,б), каждая из которых параллельно-последовательная. Поэтому

Р = р5 [(р121 р2 )(р343 р4 )] + (1-р5 )[р1 р32 р41 р3 р2 р4 ]=
= 0,9[(0,9+0,9 - 0,9´0,9) ´ (0,9+0,9 - 0,9´0,9)] +
+ (1-0,9) ´ [0,9´0,9 + 0,9´0,9 - 0,9´0,9´0,9´0,9]»0,978.

Вероятность безотказной работы мостиковой схемы, состоящей из пяти неодинаковых и независимых элементов, можно определить по формуле:

Р=2р1 р2 р3 р4 р52 р3 р4 р51 р3 р4 р51 р2 р4 р51 р2 р3 р5 -
1 р2 р3 р41 р3 р52 р3 р41 р42 р5 . (4.5.17)

В случае идентичных элементов эта формула принимает вид

Р = 2р5 -5р4 +2р3 +2р2 . (4.5.18)

Подставляя соотношение (4.5.18) в формулу (4.5.4), получаем, что в случае использования элементов с постоянной интенсивностью отказов (экспоненциальном законе распределения отказов)

Р(t) = 2ехр(-5lt)-5ехр(-4lt)+2ехр(-3lt)+2ехр(-2lt). (4.5.19)

К-во Просмотров: 522
Бесплатно скачать Реферат: Основы расчета надежности технических систем по надежности их элементов