Реферат: Особенности конструирования радиотехнической аппаратуры

Эпоксидный гетинакс - это материал на такой же бумажной основе, но пропитанный эпоксидной смолой.

Эпоксидный стеклотекстолит - это материал на основе стеклоткани, пропитанный эпоксидной смолой. В этом материале сочетаются высокая механическая прочность и хорошие электрические свойства.

Прочность на изгиб и ударная вязкость печатной платы должны быть достаточно высокими, чтобы плата без повреждений могла быть нагружена установленными на ней элементами с большой массой.

Как правило, слоистые пластики на фенольном, а также эпоксидном гетинаксе не используются в платах с металлизированными отверстиями. В таких платах на стенки отверстий наносится тонкий слой меди. Так как температурный коэффициент расширения меди в 6-12 раз меньше, чем у фенольного гетинакса, имеется определенный риск образования трещин в металлизированном слое на стенках отверстий при термоударе, которому подвергается печатная плата в машине для групповой пайки.

Трещина в металлизированном слое на стенках отверстий резко снижает надежность соединения. В случае применения эпоксидного стеклотекстолита отношение температурных коэффициентов расширения примерно равно трем, и риск образования трещин в отверстиях достаточно мал.

Из сопоставления характеристик оснований (см. дальше) следует, что во всех отношениях (за исключением стоимости) основания из эпоксидного стеклотекстолита превосходят основания из гетинакса.

Печатные платы из эпоксидного стеклотекстолита характеризуются меньшей деформацией, чем печатные платы из фенольного и эпоксидного гетинакса; последние имеют степень деформации в десять раз больше, чем стеклотекстолит.

Некоторые характеристики различных типов слоистых пластиков представлены в таблице 1.

Тип

Максимальная рабочая температура, 0 C

Время пайки при 2600 С, сек

Сопротивление изоляции, МОм

Объемное сопротивле­ние, МОм

Диэлектри­ческая постоянная, e

Фенольный гетинакс

110-120

5

1 000

1·104

5,3

Эпоксидный гетинакс

110-120

10

1 000

1·105

4,8

Эпоксидный стеклотекстолит

130-150

20

10 000

1·106

5,4

Сравнивая эти характеристики, делаем вывод, что для изготовления двусторонней печатной платы следует применять только эпоксидный стеклотекстолит.

В качестве фольги, используемой для фольгирования диэлектрического основания можно использовать медную, алюминиевую или никелевую фольгу. Однако, алюминиевая фольга уступает медной из-за плохой паяемости, а никелевая - из-за высокой стоимости. Поэтому в качестве фольги выби

раем медь.

Медная фольга выпускается различной толщины. Стандартные толщины фольги наиболее широкого применения - 17,5; 35; 50; 70; 105 мкм. Во время травления меди по толщине травитель воздействует также на медную фольгу со стороны боковых кромок под фоторезистом, вызывая так называемое подтравливание. Чтобы его уменьшить обычно применяют более тонкую медную фольгу толщиной 35 и 17,5 мкм. Поэтому выбираем медную фольгу толщиной 35 мкм.

Исходя из всех вышеперечисленных сравнений для изготовления двусторонней печатной платы позитивным комбинированным способом выбираем фольгированный стеклотекстолит СФ-2-35.

5. Техническое описание конструкции

Принципиальная схема УМЗЧ приведена на рис. 2. Каскад предварительного

усиления вы­полнен на быстродействующем ОУ DAI (К544УД2Б), который наряду с необходимым усиле­нием по напряжению обеспе­чивает устойчивую работу усилителя с глубокой ООС. Резистор обратной связи R5 и резистор R1 определяют коэф­фициент усиления усилител я. Выходной каскад выполнен на транзисторах VT1—VT 8. Его работа была рассмотрена выше. Конденсаторы С 6—С9 кор­ректируют фазовую и частот­ную характеристики каскада. Стабилитроны VDI , VD 2 ста­билизируют напряжение пита­ния ОУ, которое одновременно используется д ля создания не­обходимого напряжения смеще­ния выходного каскада.

Делитель выходного напря­жения ОУ R6, R7, диоды VD3— VD 6 и резистор R4 образуют цепь нелинейной ООС, которая уменьшает коэффициент усиле ния ОУ, когда выходное напря­жение усилителя мощности до­стигнет своего максимального значения. В результате умень­шается глубина насыщения транзисторов VT1, VT2 и сни­жается вероятность возникнове­ния сквозного тока в выходном каскаде. Конденсаторы С4, С5 — корректирующие. С увели­чением емкости конденсатора С5 растет устойчивость усили­теля, но одновременно увели­чиваются нелинейные искаже­ния, особенно на высших звуко­вых частотах.

Усилитель сохраняет работо­способность при снижении напряжения питания до ±25 В. Возможно и дальнейшее сниже­ние напряжения питания вплоть до ±15 и даже до ±12 В при уменьшении сопротивления ре­зисторов R2, R3 или непосред­ственном подключении выводов питания ОУ к общему источ­нику питания и исключении стабилитронов VDI, VD 2.

Снижение напряжения пита­ния приводит к уменьшению максимальной выходной мощно­сти усилителя прямо пропор­ционально квадрату изменения напряжения питания, т. е. при уменьшении напряжения пита­ния в два раза максимальная выходная мощность усилителя уменьшается в четыре раза.

Усилитель не имеет защиты от короткого замыкания и пере­грузок. Эти функции выполняет блок питания.

В журнале «Радио» высказы­валось мнение о необходимости питания УМЗЧ от стабилизи­рованного источника питания для обеспечения более есте­ственного его звучания. Дей­ствительно, при максимальной выходной мощности усилителя пульсации напряжения неста­билизированного источника мо­гут достигать нескольких вольт.

К-во Просмотров: 285
Бесплатно скачать Реферат: Особенности конструирования радиотехнической аппаратуры