Реферат: Переключательные функции одного и двух аргументов

x Ú 1 = 1;

x Ú x = x ;

x Ú y =y Ú x ;

x Ú= 1.

Таблица истинности функции f6 (x,y) совпадает с таблицей сложения двух одноразрядных двоичных чисел по модулю два. Можно ввести функцию n аргументов, соответствующую сумме по модулю два n одноразрядных двоичных чисел. Такая переключательная функция определяется следующим условием: она равна единице, если число аргументов, равных единице, нечетно, и равна нулю, если число таких аргументов четно. Приведем некоторые соотношения для суммы по модулю два:

x Å 0 = x ;

x Å 1 = ;

x Å x = 0;

x Å x Å x = x ;

x Å y = y Å x .

Рассмотренные шестнадцать функций двух аргументов (будем называть их элементарными) позволяют строить новые переключательные функции следующим образом:

· путем перенумерации аргументов;

· путем подстановки в функцию новых функций вместо аргументов.

Функцию, полученную из функций f 1 , f 2 , …, fk путем применения (возможно многократного) этих двух правил, будем называть суперпозицией функций f 1 , f 2 , …, fk . Например, имея элементарные функции инверсии, конъюнкции, дизъюнкции, импликации, запрета, сложения по модулю два, можно составить новую переключательную функцию:

f ( x , y , z ) = (( Ú y ) D z ) Å (( y ® z ) × x ).

Используя таблицы, определяющие элементарные функции, можно задавать в виде таблицы любую переключательную функцию, являющуюся суперпозицией этих функций.

Пример 1. Представить в виде таблицы функцию

f ( x , y , z ) = (( Ú y ) D z ) Å (( y ® z ) × x ).

Решение. Функцию f (x,y,z) будем представлять последовательно, записывая в столбцы табл. 1.5 промежуточные результаты, получаемые после выполнения каждой операции:

Таблица 3

Таблица истинности функции f ( x , y , z ) = (( Ú y ) D z ) Å (( y ® z ) × x ).

x y z ( Ú y) ( Ú y) D z) (y ® z) (y ® z) × x (( Ú y) D z) Å ((y ® z) × x)
0 0 0 1 1 1 1 0 1
0 0 1 1 1 0 0 0 0
0 1 0 1 1 1 1 0 1
0 1 1 1 1 0 1 0 0
1 0 0 0 0 0 1 1 1
1 0 1 0 0 0 0 0 0
1 1 0 0 1 1 1 1 0
1 1 1 0 1 0 1 1 1

3. Представление переключательной функции в виде многочленов.

1. Конституенты. В п. 2 был рассмотрен один из возможных способов представления переключательной функции – задание ее в виде таблицы истинности. В этом разделе будем решать обратную задачу, а именно представление переключательной функции, заданной таблицей истинности, через элементарные функции, образующие базис.

Рассмотрим переключательные функции, называемые конституентами.

Определение 1. Конституентой единицы называют переключательную функцию n аргументов, которая принимает значение, равное единице на одном единственном наборе аргументов.

Из определения следует, что число различных конституент единицы среди функций n аргументов равно 2n . Конституенты единицы обозначаются так: Ki (x1 , …, xn ) , где i – номер набора, на котором конституента равна единице. Например, запись K7 (x1 , x2 , x3 , x4 ) означает функцию четырех аргументов, равную единице на наборе (0111).

Конституента единицы может быть выражена через конъюнкцию всех аргументов, каждый из которых входит в произведение со знаком отрицания или без него. Приведенную выше конституенту единицы можно представить через конъюнкцию аргументов следующим образом:

K 7 ( x 1 , x 2 , x 3 , x 4 ) = .

Чтобы записать в виде произведения конституенту Ki ( x 1 , …, xn ), можно воспользоваться следующим правилом: записать n -разрядное двоичное число (n – число аргументов), равное i , и конъюнкцию n переменных; над переменными, места которых совпадают с позициями нулей в двоичном числе i , поставить знак отрицания.

Пример 2. Записать конституенту, равную единице на двенадцатом наборе для функции пяти переменных.

К-во Просмотров: 236
Бесплатно скачать Реферат: Переключательные функции одного и двух аргументов