Реферат: Перспективные аспекты развития физико-топологических представлений о времени

Получили финитный результат типа.

Проведем экспликацию полученных выше результатов применительно к реальным физическим условиям. Для этого, сначала, обратимся к определению; пустое множество - это множество, не содержащее ни одного элемента. Такого рода ситуация приводит к тому, что на универсальном множестве Времени пустое множество - вырезано. А это значит, что на оси Времени Т1 трудно выделить точки для подобных областей, которые имели бы конкретные координаты. Кроме этого, в алгебре множеств за пустым множеством закреплена функция нуля алгебры чисел, т.е. аддитивная операция с любым произвольно выбранным множеством не меняет этого множества. Таким образом, для процессов связанных с концепцией физического Времени, пустое множество выступает как нуль-момент Времени, т.е. соответствует такой точке, в которой отсчет Времени равен нулю. Существование такой точки можно, вероятно, прогнозировать только в системе координат коррелирующей с точкой начала раздувания Вселенной. На данном же этапе развития представлений о физических процессах окружающего нас Мира, начиная с уровня фундаментальных взаимодействий и кончая масштабами видимой части Вселенной, не возможно найти такую область, где бы реализовывалось выше указанное физическое явление.

Значит, достоверно и однозначно указать в естественном Времени точку (точки) эквивалентные не представляется возможным. Одноко, все же, мы должны сознавать, что условия топологического Времени способствуют тому, чтобы фигурировало бы в общей топологии Времени, как составная часть общего решения. Ведь, по сути дела, пустое множество вводится для того,чтобы мы могли говорить о множествах, как о системах априори существующих. Сформулируем такое предложение.

Предложение 2.

Универсальное множество Времени адекватно двум классам Временных множеств, которые пропорциональны только множеству Будущего F множеству Прошлого Р , а на множество Настоящего PR накладывается принцип переменности.

Проведем верификацию этого предложения.

Дано:.

Доказать: .

Доказательство: доказательство будем проводить для общего решения 1Т.

1) Поскольку и учитывая выражение ( 3 ) представим универсальное множество Времени в виде триады:

, (5.2)

, (5.2)

(5.3)

2) Исследуем вариант ( 5.1 )

Таким образом доказано, что выражение - существует .

3) Анализ записи ( 5.2 )

Перед доказательством, целесообразно сделать следующее замечание. Так как, Настоящее PR образовано пересечением Будущего и Прошлого, то легко представить, что дополнение множества Настоящего есть дополнение пересечений множеств Будущего и Прошлого, т.е..

Здесь доказанно, что универсальное множество Времени свободно от пустого множества и от множества Настоящего. 4) Разберем случай ( 5.3 )

Имеет место конечный результат, в котором отражено, что только объединение Будущего и Прошлого формирует универсальное множество Времени.

Заметим, что при доказательстве Предложений 1 и 2 сознательно приводятся полные записи алгебраических преобразований. Это необходимо делать, по-скольку нужна полная ясность при использовании методики Булевой алгебры применительно к композиции существующей между Прошлым, Настоящим и Будущим.

Представленная выше серия доказательств, естественно, требует самой прямой увязки с физической реальностью окружающего нас мира. И поэтому посмотрим каким образом можно использовать полученные результаты.

Для начала обратимся к Рис. 3 . Эта диаграмма схожа по своей форме с той, которая дается Хокингом и Эллисом в [2] . Но между ними есть принципиальное различие. Если в [2] диаграмма создается главным образом для пространства, то здесь схема стротся в ракурсе Временных отношений.

Итак, на Рис. 3 , в левой части фигурирует универсальное множество Времени. В иньективны множества Будущего, Настоящего и Прошлого, которые являются подмножествами При этом должен соблюдаться принцип каузальности и условие пересечения F и Р . Выберем на множестве Настоящего PR произвольную точку k , где . В связи с тем, что пересечение множеств Будущего и Прошлого приводит к возникновению множества Настоящего, то если.

В правой же части схемы показано Время n= 1 -измерений. Посмотрим, каким образом трансформируется левая часть при отображении на.

Первый шаг: за счет существования оператора взаимо-однозначного отображения происходит выделение множества и области. К тому же, теперь, координатой точки k является координата . Причем.

Второй шаг: при действии оператора взаимно-однозначного отображения наблюдается образование множества и области;. При этом, координатой точки k является координата. Где.

К-во Просмотров: 279
Бесплатно скачать Реферат: Перспективные аспекты развития физико-топологических представлений о времени