Реферат: Первая краевая задача для уравнения теплопроводности в нецилиндрической неограниченной области

V( t, x ) = . (*)


Исследуем знак подинтегрального выражения, принимая во внимание, то что :


; (а)


;


;


где .


После проведенного исследования видно, что



Использовав известное разложение ,

где Z 0, , заменим экспоненты во втором интеграле рядами:


(а) ;


(б) .


В результате получим :



Здесь:


, , (4.1)


, . (4.2)


Запишем неравенство (3) в виде, принимая во внимание только одно слагаемое суммы ряда:


m=1,


U(t, x) . (5)


Выше приведенная оценка не отражает качественной картины и может быть использована при дальнейших исследованиях задач подобного вида. ( т .к .фиксированно)

Рассмотрим другую возможность оценки неравенства (3).


пусть

(т.е. финитна), в соответствии с принципом максимума:


, (3)

при

где W- решение краевой задачи (З) с начальными условиями:

К-во Просмотров: 229
Бесплатно скачать Реферат: Первая краевая задача для уравнения теплопроводности в нецилиндрической неограниченной области