Реферат: Первая краевая задача для уравнения теплопроводности в нецилиндрической неограниченной области

Прусаков Д. В.

«Первая краевая задача для уравнения теплопроводности в нецилиндрической неограниченной области» 1998- 99 уч. г. 14

Введение 3

1.Постановка задачи 3

2. Оценочный анализ решения задачи. 4

2.1. Оценка решения сверху. 4

2.2. Оценка решения в виде интеграла 5

2.3. Выбор интервала ( ) и оценка погрешности 8

3. Формулировка результата в виде теоремы 10

4. Примеры 11

Заключение 12

СПИСОК ЛИТЕРАТУРЫ 13


Введение

В ряде случаев оказывается невозможным или неприемлемым получение аналитического решения поставленной задачи. Использование основных теорем и положений анализа позволяет получить качественную картину поведения функции решения в заданной области, оценить скорость сходимости решения. Такой подход широко реализуется в областях техники, где получение результата необходимо с заданной точностью.

1.Постановка задачи


В дипломной работе рассматривается задача:


(З)


0.

t

x


Требуется привести пример оценки решения задачи (З) в области , и исследовать полученную оценку при


2. Оценочный анализ решения задачи.


Оценка решения задачи (З) основывается на принципе максимума для уравнения теплопроводности : «Всякое решение уравнения в прямоугольнике , непрерывное вплоть до границы, принимает свои наибольшее и наименьшее значения на нижних или на боковых его границах» [2].

2.1. Оценка решения сверху.


В области t=t , x= рассмотрим решение задачи :


, V(0,x) = ( x ), x , (1)


это решение имеет вид [1]:


v (t, x) = . (2)


Зафиксируем некоторое и перейдем к исходной системе координат, тогда (2) в системе t=t, x= будет выглядеть так:

V(t, x) = (2’)

Из принципа максимума [2] заключаем, что:


U( t, x ) V( t, x ). (3)


Таким образом задача сводится к оценке интеграла (2).


2.2. Оценка решения в виде интеграла


--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 225
Бесплатно скачать Реферат: Первая краевая задача для уравнения теплопроводности в нецилиндрической неограниченной области