Реферат: Первая краевая задача для уравнения теплопроводности в нецилиндрической неограниченной области
V( t, x ) = . (*)
Исследуем знак подинтегрального выражения, принимая во внимание, то что :
; (а)
;
;
где .
После проведенного исследования видно, что
Использовав известное разложение ,
где Z 0, , заменим экспоненты во втором интеграле рядами:
(а) ;
(б) .
В результате получим :
Здесь:
, , (4.1)
, . (4.2)
Запишем неравенство (3) в виде, принимая во внимание только одно слагаемое суммы ряда:
m=1,
U(t, x) . (5)
Выше приведенная оценка не отражает качественной картины и может быть использована при дальнейших исследованиях задач подобного вида. ( т .к .фиксированно)
Рассмотрим другую возможность оценки неравенства (3).
пусть
(т.е. финитна), в соответствии с принципом максимума:
, (3’)
при
где W- решение краевой задачи (З) с начальными условиями: