Реферат: Пятая побочная подгруппа Периодической системы элементов Д.И. Менделеева

Министерство образования Российской Федерации

Уссурийский Государственный Педагогический Институт

Биолого-химический факультет

Курсовая работа

Пятая побочная подгруппа Переодической системы элементов Д.И. Менделеева

Выполнила:

студентка 2 курса 521 группы

Савенко О.В._________

Научный руководитель:

Ст. преподаватель

Карпенко Н.Н._________

Уссурийск, 2001 г.
Содержание :

Глава I. Ванадий…………………………………………

I.1. История открытия элемента…………………………………………………

I.2. Характеристика элемента……………………………………………..….

I.3. Распространенность в природе………………………………………….

I.4. Химические свойства ванадия…………………………………………….

I.5. Оксиды ванадия…………………………………………………………….

I.6. Ванадиевые кислоты, основания и соли…………………………………

I.7. Органические соединения ванадия………………………………………

I.8. Потенциальная опасность для здоровья…………………………………

I.9. Физиологическое значение………………………………………….

I.10. Области применения ванадия……………………………………………..

Глава II. Характеристика элементов ниобия и

тантала…………………………………………………………………..

II.1. История открытия элементов…………………………………

Глава III. Ниобий…………………………………………………..

III.1. Ниобий в свободном состоянии………………………………………

III.2. Химические свойства ниобия………………………………………….

III.3. Оксиды ниобия, кислоты и их соли…………………………………..

III.4. Соединения ниобия…………………………………………………….

Глава IV. Тантал…………………………………………………………

IV.1. Тантал в свободном состоянии………………………………………….

IV.2. Химические свойства тантала…………………………………………….

IV.3. Химия танталовых соединений…………………………………………….

IV.4. Применение тантала и ниобия………………………………………………

Глава V. Нильсборий…………………………………………………

Литература…………………………………………………………

Глава I. Ванадий

I .1 История открытия элемента

Ванадий назван в честь богини красоты древних скандинавов — легендарной Фреи Ванадис. Это имя элементу дал в 1831 г. Гавриил Сефстрем, профессор Горно го института в Стокгольме, Он выделил элемент из шлака, получающег ося при плавке руды в доменных пе чах. Работу Г. Сефстрем осуществил вместе со своим ученико м Иоганном Якобом Берцелиусом.

Объективность требует сказать , что до Г. Сефстрема этот элемент уже был выделен, и даже не один , а два раза. В 1801 г. мексиканский ми нералог А ндрес Мигу эль дель Рио обнаружил в бурой свин цовой руде не встречавшийс я прежде элеме нт и наз вал его «эритронием». Однако он усомнился в своих выв одах и решил, что име ет дело с недавн о открытым хром ом, поэтому н е об народовал своей находки. Чуть раньше Г. Сефстрема к открытию этого элемента подошел Фридри х Вёлер, тот самый, с именем которого связывают пе рвый в истории си нте з органического вещества в лаборатории. Ф. Вёлер исследовал привезенные и з Мексики руды (с которыми им ел дело и Дель Рио) и обнаружил в ни х нечто необычное, но тут он некстати заболел, а когда возобновил ра боту и определил, ч то имеет дело с новым элементом, то было уже поздн о — Г. Сефстрем к этому времени опубли ков ал и звестие о с воем открытии . Таким образом, честь открытия ванадия оставалас ь з а Г. Сефстремом.

Ф. Велер же, «проз евавший» ванадий, так написал др угу о своей неудач е: « Я был настоящим ослом, проглядев новый элемент в бурой свинцовой руде, и прав был Берцелиус, когда он не без иронии смеялся над тем, как неудачно и слабо, без упорства, стучался я в дом богини Ванадис» .

Однако на самом деле Сефстрем выделил и з шлака не чи стый металл, а твердые и жаростойкие его соединения — карбиды ванадия. Он получил порошок черного цвета, а в чистом ви де ванадий — ковкий металл св етло серого цвета. Но это выяснилось лиш ь после 1667 г. (т. е. более тридцати лет спустя после открытия Г. Сефстрема), когда ванадий и его соединения как следует изучили Ген ри Энфильд Роско и Эдуард Горне. В 1869 г. Г. Роско удалось впервые получить ванади й 96-процентной чистоты. Металл оказался хрупким и тве рдым, но только, что несколькими строчками выше говорилось, что ванадий — ковкий, а не хрупкий. Противоречия здесь нет. По мере
удалени я оставшихся 4% примесей ванадий становится
все более пластич ным и ковким. Впервые чистый ванадий получен в 1927 г.

I .2. Характеристика элемента

Ванадий считают как бы связующим между элементами первой и побочной подгрупп V группы. Его химия напоминает химию подгруппы азота тем, что в степени окисления +5 ванадию соответствует кислота НVО3 , гораздо более устойчивая, чем кислоты сурьмы и висмута — членов главной подгруппы. В то же время этот элемент образует простое вещество, которое, подобно другим членам побочной подгруппы, является типичным устойчивым тугоплавким металлом.

По количеству степеней окисления ванадий напоминает азот. Ни у кого из его аналогов (ни у ниобия, ни у тантала) нет такого количества степеней окисления, как у ванадия. Точно известны четыре его состояния: +2, +3, +4 и +5. У азота есть еще два других: +1 и -3. Относительно недавно появилось сообщение о том, что при содержании кислорода 14,5—15,5 % происходит образование σ-фазы, близкой по составу к V2 O. Наличие степени окисления +4 и +1 подтверждается органическими производными ванадия. Что же касается соединений с водородом, когда формально степень окисления соответствует -3, то ванадий обладает способностью растворять водород и при этом образовывать с ним гидрид.

По стабильности валентные состояния ванадия неравноценны. В обычных условиях самым устойчивым со­стоянием будет +4. В это состояние он может быть пе­реведен из +3 даже молекулярным кислородом, а из +5 восстановлен мягкими восстановителями. На этом основана, кстати сказать, ванадатометрия -определение при помощи соединений ванадия присутствия, например, ионов Fe2+ , Os4+ , Mo+5 .

I .3. Распространенность в природе

На его долю приходится пять из каждых ста тысяч атомов земной коры. Однако число богатых месторожде­ний невелико. Первое из них было обнаружено в 1902г. в Испании - ванадий сопутствовал свинцу. Исключитель­ной по своему содержанию является руда, добываемая на высоте 4700 м в Перу: она состоит из сульфида вана­дия – V2 S5 . При обжиге получается одновременно два нужных экономике продукта: оксид серы (IV), необходи­мый для получения серной кислоты, и ванадий - для оборонной промышленности. Ведь ванадий - стратеги­ческое сырье, без него не обходится производство спе­циальных сортов стали.

Всего известно бо­лее 65 минералов, включающих ванадий. Интересной особенностью распространения этого элемента является его содержание в ископаемых растительного происхож­дения: углях, нефти, горючих сланцах и др. Вода морей содержит 0,3 г ванадия на 1000 т, и некоторые обитатели морей (морские ежи, голотурии) включают его в состав своего организма.

Долгое время не получали чистый ванадий, а когда это произошло, то оказалось, что свойства даже 96% ванадия резко отличаются от свойств 100 %. Это ме­талл серебристо-серого цвета, ковкий и пластичный. При температуре, близкой к абсолютному нулю (4,3 К), обладает сверхпроводимостью. Однако даже небольшие примеси кислорода, азота или водорода делают металл твердым и хрупким, как бы переводя его из типичного металла в нетипичный. В таком изменении свойств есть своя логика: по мере того как он все более насыщает­ся кислородом и переходит от VO к V2 O5 , его металли­ческий характер меняется на неметаллический.

Процесс получения чистого ванадия довольно слож­ный. Сначала стремятся получить его оксид (V2 O5 или V2 O3 ) или галогенид (VС13 или VI3 ), а затем применяют либо металлотермию:

V2 O5 + 5Ca = 5CaO+2V;

2VCl3 + 3Mg== 3MgCl2 +2V,

либо восстановление углем в вакууме:

V2 О3 + 3C = 3CO+2V,

либо термическую диссоциацию в вакууме на горячей проволоке:

2VI3 = 2V+3I2

Последним способом получают металл высокой чистоты.

I .3.1. Источники

Основным источником поступления ванадия в подземные воды являются железные и полиметаллические руды, содержащие небольшую примесь ванадия, а также экологические факторы: сточные воды предприятий черной и цветной металлургии, добыча и переработка нефти, сжигание углеводородного топлива (например, выбросы автомобилей). Ванадий имеет свойство связываться с другими элементами и частицами и поэтому в основном задерживается в почве, где и остается длительное время. В растениях обнаруживаются только незначительные следы ванадия, что свидетельствует о его слабом накоплении в растительных тканях.

I .3.2. Влияние на качество воды

В воде ванадий образует устойчивые анионные комплексы (V4 O12 )4- и (V10 O26 )6- . В миграции ванадия существенна роль его растворенных комплексных соединений с органическими веществами, особенно с гумусовыми кислотами. Концентрация ванадия в природных водах ничтожна - сотые и тыс. доли мг/л. В таких количествах ванадий не оказывает сколько-нибудь значительного влияния на качество воды. Очевидно, этот факт и является причиной того, что ни ВОЗ, ни USEPA, ни ЕС содержание ванадия в воде не нормируют. По российским нормам предельно допустимая концентрация ванадия для питьевой воды составляет 0,1 мг /л . Практически такие концентрации могут встречаться только при проникновении в подземные воды ванадийсодержащих сточных вод.Технология удаления из воды: обратный осмос, ионный обмен, дистилляция.

I .4. Химические свойства ванадия

На воздухе ванадий не изменяется, устойчив он к во­де, к растворам минеральных солей и щелочей. Кислоты на него действуют только такие, которые одновременно являются окислителями. На холоде на него не действу­ют разбавленные азотная и серная кислоты. По-видимо­му, на поверхности металла образуется тончайшая плен­ка оксида, препятствующая дальнейшему окислению металла («пассивированное состояние»). Для того что­бы заставить пассивированный ванадий интенсивно реа­гировать, его нужно нагреть. При 600—700°С происхо­дит интенсивное окисление компактного металла, а в мелкораздробленном состоянии он вступает в реакции при более низкой температуре:

2V +5O2 2V2 O5 2VO2 +O2 ;

2V +5F2VF5 ;

2V +2Cl2 в токе хлора t VCl4

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 202
Бесплатно скачать Реферат: Пятая побочная подгруппа Периодической системы элементов Д.И. Менделеева