Реферат: Пятая побочная подгруппа Периодической системы элементов Д.И. Менделеева
Ванадий в этом отношении служит примером. В высшей окислительной степени у него преобладают свойства неметалла. При состоянии окисления +4 его гидроксид в одинаковой мере проявляет. Свойства обеих противоположностей, т. е. он амфотерен.
Сопоставив приведенные данные об оксидах ванадия с аналогичными сведениями о подобных соединениях других членов V группы, можно прийти к следующему выводу: по количеству оксидов и по числу состояний окисления ванадий далеко превосходит не только членов побочной подгруппы (это естественно), но и некоторые элементы главной подгруппы. Если судить по кислородным соединениям (именно их особенности несколько десятилетий назад считались основным признаком сходства и различия), то ванадий должен считаться более близким «родственником» азота, чем висмут, сурьма и даже мышьяк. Ведь эти элементы не образуют всех типов оксидов, присущих азоту, а существующие у них по своим свойствам подобны оксидам фосфора.
I.6. Ванадиевые кислоты, основания и соли
Ванадиевая кислота, подобно фосфорной и мышьяковой имеет три формы: НVО3 (мета-), H3 VO4 (орто-), H4 V2 O7 ( nupo -). Сами кислоты в чистом виде не получаются, но соли их можно осадить из раствора. Например, регулированием кислотности среды можно выделить серебряную соль во всех трех формах (табл. 1).
Таблица 1
Среда | РН | Соль |
Кислая | 4,3 – 4,7 | AgVO3 |
Слабокислая | 5,5 – 5,8 | Ag4 V2 О7 |
Почти нейтральная | 6 - 6,5 | Ag3 VО4 |
Сам собой напрашивается вывод о сходстве солей ванадиевых и фосфорных кислот. Аналогичные соли были выделены и для других ионов металлов (например, соли натрия).
Наиболее устойчивой в водных растворах является метаванадиевая кислота, которая все время именуется как просто ванадиевая. Это соединение обладает признаками амфотерности, которые более значительны, чем у фосфорных кислот. Для нее возможны направления электролитической диссоциации как с отщеплением Н+ , так и ОН- .
VO3 - + H+ HVO3 = VO2 OH VO2 + + ОН-
Существование VO2 - можно доказать тем, что соляная кислота реагирует с раствором ванадиевой кислоты и окисляется до свободного хлора:
2VO2 + + 2HCl 2V02 + + Cl2 + 2OH-
Следовательно, в этом случае проявляются некоторые признаки основания.
По цвету раствора и по солям, выделяющимся из него, можно судить, в форме ионов каких кислот присутствует ванадий в растворе.
При растворении в воде оксида ванадия (V) появляется желтая окраска, которая может меняться и даже исчезать совсем в зависимости от среды. Такая особенность объясняется возможностью ионаVO3 - существовать в различных формах. Желтый цвет обусловлен присутствием этого иона в тримерной форме [V3 О9 ]3- . При сильно щелочной среде раствор бесцветен: там находятся ионы пиро- и ортованадиевых кислот:
2[V3 09 ]3- + 60H- = 3[V2 O7 ]4- + 3H2 O;
[V2 О7 ]4- + 2ОН- = 2[VO4 ]3- + Н2 О
По мере уменьшения щелочности окраска опять становится желтой и даже оранжевой. Это связано с изменением формы существования иона VO3- от [V3 О9 ]3- в щелочной среде и [VO4 ]3- в нейтральной до [V6 O17 ]4- в кислой:
3[VО4 ]3- +6H+ = 3[V2 O9 ]3- + 3H2 О;
2[V3 О9 ]3- + 2H+ = [V6 Ol7 ]4- + H2 О
При подщелачивании процесс идет в обратную сторону:
[V6 O17 ] 4- + 2OН- = 2[V3 О9 ]3- + H2 O
Оранжевый цвет приписывается присутствию иона декаванадата:
5 [V6 O17 ]4- + 2Н+ = 3[V10 O28 ]6- + Н2 О,
который может быть выделен из раствора в виде оранжевой соли кальция Ca3 V10 O28 . 16H2 О. Здесь приведены простейшие формулы. Реально же в небольших количествах присутствуют и другие соединения, заключающие в составе своей молекулы до 12 атомов ванадия.
Из солей ванадиевой кислоты растворимы соли одновалентных металлов (К, Na и т.д.), а ванадаты аммония, двух- и трехвалентных металлов труднорастворимы. Из них особенно важен ванадат аммония. Из него при действии на его раствор сульфида аммония образуется вишнево-красный раствор тиосоли:
NH4 VО3 + 4(NH4 )2 S + 3H2 О = (NH4 )3 VS4 + 6NH4 ОH
Пероксид водорода Н-О-О-Н производит в нем замену части атомов кислорода на пероксидную группу -O-O- и превращает его в перванадат:
2NH4 VО3 + 3H2 О2 = (NH4 )2 H2 V2 О10 + 2H2 О
Сами по себе и в щелочной среде такие соединения устойчивы, а при подкислении образуются свободные надкислоты общей формулы H4 V2 Ox (причем x > 7). Они постепенно разлагаются с выделением кислорода. Свойство давать пероксидные соединения характерно и для остальных членов подгруппы ванадия.
Из других солей пятивалентного ванадия достаточно полно охарактеризованы сульфид V2 S5 и единственное соединение с галогенами - пентафторид ванадия VF5 . Первое из этих двух соединений проще всего может быть получено в виде черного порошка нагреванием V2 О3 с серой при 350°С;
2V2 O3 + 13S = 2V2 S5 + 3SO2
При нагревании на воздухе он сгорает до V2 S5 , а при 400°С и в отсутствие воздуха способен распадаться на V2 S3 и серу. В воде V2 S5 практически нерастворим, но легко растворяется в щелочах.
Пентафторид может быть легко получен при взаимодействии элементов (300°С), он представляет собой бесцветное кристаллическое вещество. Возгоняется при 111°С, водой VF5 полностью гидролизуется. Ему соответствует комплексная кислота H[VF6 ]. Сама она не выделена, но получены соли некоторых металлов - (калия, серебра, бария). К нагреванию они не особенно устойчивы:
K[VF6 ] 330°C KF+VF5
В соединениях с серой и фтором ванадий выступает в роли типичного металла.
Таким образом, в кислородсодержащих кислотах и их солях он ведет себя как неметалл, но в других своих соединениях — как металл. Следовательно, пятивалентный ванадий проявляет свойства неметалла, и этому его качеству соответствуют кислоты, но он способен проявлять признаки металличности в некоторых соединениях.
Четырехвалентному ванадию соответствуют предполагаемые кислотыH2 V4 О9 ; Н2 VO3 ; H4 VO4 и H6 VO5 . Соединения элемента такой степени окисления становятся в растворе производными ванадила.
Ванадиюсо степенями окисления +3, +2 соответствуют основания V(OH)3 и V(OH)2 . Оба они образуются при действии щелочи на растворы, содержащие соответственно ионы V3+ и V2+ . В этих состояниях окисления ионы ванадия ведут себя как типичные ионы металлов. Отличает их разве только неустойчивость. Ванадий стремится перейти в свое самое стабильное состояние +4. Поэтому оба основания на воздухе легко окисляются до степени окисления ванадия +4, т. е. являются восстановителями:
2V(OH)2 + O2 = 2VO(OH)2 ;
4V(ОН)3 + O2 = 4VО(ОН)2 + 2Н2 O
Из-за своей неустойчивости в чистом виде гидроксиды не получены. Они могут существовать некоторое время при действии щелочей на растворы солей ванадия: V(ОН)3 в виде рыхлого зеленого осадка, а V(ОН)2 — буро-коричневого.
Однако соли трехкислотного основания V(ОН)3 вполне устойчивы. Безводный трифторид VF3 зеленовато-желтого цвета плавится лишь при температуре выше 800°С. Трихлорид — красно-фиолетовые кристаллы — устойчив в отсутствие влаги. Менее устойчивы бромид и иодид.
Состояние окисления +2 ванадия наименее устойчиво, поэтому ванадий, содержащийся в солях, стремится, отдав электрон или два, перейти в более глубокую степень окисления. Все-таки осторожным восстановлением из смеси паров тетрахлорида и водорода может быть получен дихлорид:
VCl4 + H2 = VCl2 + 2HCl.
в виде бледно-зеленых кристаллов. При растворении в воде сначала появляется фиолетовая окраска, которая быстро меняется на зеленую. Происходит переход ванадия из двузарядного иона в трехзарядный:
V2+ -e = V3+
На этом процесс не заканчивается, ванадий стремится перейти в наиболее стабильное состояние +4. Происходит снова изменение цвета раствора. Подобным же образом ведут себя бромид и иодид.
I .7. Органические соединения ванадия
Ванадий в деятельности некоторых видов организмов играет важную и далеко еще не установленную роль. Известно, что не только соединения ванадия ядовиты, но также и пыль, появляющаяся при обработке металла. Однако некоторые растения (дуб, сахарная свекла, табак, бук и др.) содержат значительные количества ванадия. Одним из активных собирателей ванадия является бледная поганка, хорошо знакомая каждому грибнику. В крови некоторых морских существ (голотурии, асцидии, морские ежи) содержание ванадия достигает 10 %, а концентрация может в миллиарды раз превышать концентрацию этого элемента в морской воде,