Реферат: Показатели вариации в статистических исследованиях
Если А=, произвольный момент преобразуется в центральный момент распределения .
- для несгруппированных данных;
- для сгруппированных данных.
При k=1 M1 =0
При k=2 M2 =
Стандартные моменты это начальные моменты из стандартных отклонений.
- для несгруппированных данных;
- для сгруппированных данных.
Стандартный момент k-го порядка это отношение центрального момента того же порядка к средне квадратическому отклонению в k-ой степени.
Так же как средняя арифметическая величина и дисперсия, центральные и стандартные моменты обладают рядом свойств, которые по сути ближе всего к свойствам дисперсии.
9. Показатели асимметрии и эксцесса.
При анализе распределений помимо графического изображения характер распределения можно выяснить, рассчитывая такие показатели, как асимметрия и эксцесс.
В качестве показателя асимметрии используют стандартный момент 3-го порядка. Если распределение симметрично относительно средней то показатель асимметрии равен нулю.
Если показатель асимметрии больше 0, то есть преобладают положительные отклонения от среднего, то наблюдается правосторонняя асимметрия , то есть преобладание в совокупности вариантов ряда превышающих среднюю.
Если же показатель асимметрии меньше 0, налицо левосторонняя асимметрия , то есть превышение численности вариантов ряда меньше чем средняя.
Показатель эксцесса характеризует степень колеблемости исходных данных, чем сильнее вариация, тем более пологой является кривая распределения и наоборот, чем однороднее совокупность, тем в большей степени варианты ряда сконцентрированы около средней и тем более островершинней будет кривая распределения.
В качестве эталона высоты распределения в статистике принимается кривая нормального распределения. Доказано, что стандартный момент 4-го порядка у этой кривой равен 3.
10. Средняя арифметическая и дисперсия альтернативного признака.
Альтернативный признак – тот которым обладает или не обладает единица совокупности.
Наличие альтернативного признака обозначают 1, а отсутствие – 0. Если численность совокупности – N, а M – число единиц, обладающих изучаемым признаком, то - доля единиц, обладающих изучаемым признаком. Соответственно - доля единиц таким признаком не обладающих.
Предположим
|
|
1 |
p |
0 |
К-во Просмотров: 409
Бесплатно скачать Реферат: Показатели вариации в статистических исследованиях
|