Реферат: Показатели вариации в статистических исследованиях
1. Понятие вариации и роль ее изучения в статистических исследованиях.
2. Измерители вариации.
3. Прямой способ расчета показателей вариации.
4. Свойства дисперсии и среднего квадратического отклонения.
5. Упрощенный способ расчета дисперсии и средне квадратического отклонения.
6. Относительные показатели вариации.
7. Стандартизация данных.
8. Моменты распределения.
9. Показатели асимметрии и эксцесса.
10. Средняя арифметическая и дисперсия альтернативного признака.
1. Понятие вариации и роль ее изучения в статистических исследованиях.
Вариация – это колеблемость значений признака у отдельных единиц совокупности.
Наличию вариации обязана своим появлением статистика. Большинство статистических закономерностей проявляется через вариацию. Изучая вариацию значений признака в сочетании с его частотными характеристиками, мы обнаруживаем закономерности распределения (например: население по возрасту, студентов по уровню оценок).
Рассматривая вариацию одного признака параллельно с изменением другого, мы обнаруживаем взаимосвязи между этими признаками или их отсутствие (например: зависимость между торговой площадью и товарооборотом).
Вариации в статистике проявляются двояко, либо через изменения значений признака у отдельных единиц совокупности, либо через наличие или отсутствие изучаемого признака у отдельных единиц совокупности.
Изучение вариации в статистике имеет как самостоятельную цель, так и является промежуточным этапом более сложных статистических исследований.
2. Измерители вариации.
Простейшим показателем вариации является размах колебаний : .
Достоинство этого показателя простота расчета, возможность использования для оценки вариации однородных совокупностей. Недостаток – неприемлемость для неоднородных совокупностей с редкими выбросами крайних значений признака.
Частично недостатки этого показателя устраняет межквартельный размах : . Однако, он характеризует вариацию только половины совокупности.
Для учета колеблемости всех значений признака применяют показатели среднего линейного отклонения, дисперсии и средне квадратического отклонения.
Средне линейное отклонение – среднее значение отклонений всех вариантов ряда от средней арифметической (иногда от моды или медианы):
- для несгруппированных данных;
- для сгруппированных данных.
Аналогичным по смыслу среднему линейному отклонению является показатель дисперсии и рассчитываемый на его основе показатель средне квадратического отклонения.
Дисперсия – рассеивание, данный показатель характеризует рассеивание значений признака относительно его средней величины.
- для несгруппированных данных;
- для сгруппированных данных.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--