Реферат: Построение и графическое изображение вариационных рядов

Составление вариационных рядов рассмотрим на примере данных о бонитете почв и урожайности овощей (Таблица исходных данных). Они являются исходными данными для демонстрационного примера.

Дискретный вариационный ряд строится по зависимому признаку (обозначим его У), интервальный - по независимому (Х).

Для того чтобы составить дискретный вариационный ряд урожайности овощей, необходимо расположить наблюдавшиеся значения признака в порядке возрастания, т.е. ранжирование статистических данных, а затем подсчитать частоты (сколько раз встречается то или иное значение признака).

Для графического изображения дискретного ряда служит многоугольник (полигон). При его построении на оси абсцисс откладываются варианты, на оси ординат - частоты.

Построение интервального вариационного ряда рассматривается на примере бонитета почв различных хозяйств.

Для этого:

1 . Определим число групп (число интервалов) по формуле Стерджесса:

K=1+3.32*lg (n),

где:

К-число групп (интервалов);

n- число единиц наблюдения.

В данном примере K=1+3.32*lg(30) = 6.

2. Рассчитываем величину интервала, т.е. разность между верхним и нижним значением признака в группе:

Величина интервала (шаг):

3. Формируем группы, т.е. устанавливаем верхние и нижние границы для каждого интервала. Нижней границей для первой группы будет xmin (или эта величина, уменьшенная не более чем на половину величины интервала). Чтобы найти верхнюю границу, нужно к нижней границе прибавить величину интервала h.

Верхняя граница первой группы будет нижней границей для второго интервала. Чтобы найти верхнюю границу, к полученному значению опять прибавляют величину интервала и т.д.

4. Подсчитываем число вариант, попавших в каждый интервал, Варианты, совпадающие с границами частичных интервалов, включаются в правый интервал. Графически интервальный ряд изображают с помощью гистограммы.


Глава 2. Статистические характеристики рядов распределения.

2.1. Показатели центра распределения .

Средней в статистике называется показатель, характеризующий типичный размер признака в совокупности.

Средняя арифметическая вычисляется по формулам:

простая ; взвешенная ,

где - среднее значение признака; - варианты; - частоты; - численность совокупности.

Характеристиками вариационных рядов наряду со степенными средними являются мода и медиана.

Мода - величина признака (варианта), наиболее часто повторяющаяся в изучаемой совокупности. В дискретных рядах распределения модой будет варианта с наибольшей частотой.

В интервальном ряду мода определя6ется по формуле:

,

где -нижняя граница интервала, содержащего моду; - величина модального интервала; - частота модального интервала; - частота интервала, предшествующего модальному; - частота послемодального интервала.

Медианой в статистике называется варианта, расположенная в середине вариационного ряда. Если ряд дискретный имеет нечётное число, то медианой будет варианта, расположенная в середине упорядоченного ряда и её порядковый номер. Если ряд состоит из чётного числа членов, то медианой будет средняя арифметическая из двух вариант в середине ряда с порядковыми номерами: и .

В интервальном ряду медиана рассчитывается по формуле:

К-во Просмотров: 240
Бесплатно скачать Реферат: Построение и графическое изображение вариационных рядов