Реферат: Практическое применение теории игр
Рассмотрим аналитические модели наиболее распространенных СМО с ожиданием, т.е. таких СМО, в которых требования, поступившие в момент, когда все обслуживающие каналы заняты, ставятся в очередь и обслуживаются по мере освобождения каналов.
Общая постановка задачи состоит в следующем. Система имеет n обслуживающих каналов, каждый из которых может одновременно обслуживать только одно требование.
В систему поступает простейший (пуассоновский) поток лини с параметром . Если в момент поступления очередного требования в системе на обслуживании уже находится не меньше n требований (т.е. все каналы заняты), то это требование становится в очередь и ждет начала обслуживания.
Время обслуживания каждого требования — случайная величина, которая подчиняется экспоненциальному закону распределения с параметром .
СМО с ожиданием можно разбить на две большие группы: замкнутые и разомкнутые. К замкнутым относятся системы, в которых поступающий поток требований возникает в самой системе и ограничен.
Если питающий источник обладает бесконечным числом требований, то системы называются разомкнутыми. Отмеченные особенности функционирования этой системы. Расчет характеристик работы СМО различного вида может быть проведен на основе расчета вероятностей состояний СМО (так называемы формулы Эрланга).
Рассмотрим алгоритмы расчета показателей качества функционирования разомкнутой системы массового обслужит с ожиданием.
При изучении таких систем рассчитывают различны показатели эффективности обслуживающей системы. В качестве основных показателей могут быть вероятность того, что все каналы свободны или заняты, математическое ожидание длины очереди (средняя длина очереди), коэффициент занятости и простоя каналов обслуживания и др.
Введем в рассмотрение параметр . Заметим, что если , то очередь не может расти безгранично. Это условие имеет следующий смысл: — среднее число требований, поступающих за единицу времени, -время обслуживания одним каналом одного требования. Тогда — среднее число каналов, которое необходимо иметь, чтобы обслуживать в единицу времени все поступившие требования. Поэтому условие < 1 означает, что число обслуживающих каналов должно быть больше числа каналов, необходимых для того, чтобы за единицу времени обслужить все поступившие требования. Важнейшие характеристики работы СМО:
1. Вероятность того, что все обслуживающие каналы свободны
2. Вероятность того, что занято ровно k обслуживающих каналов при условии, что общее число требований, находятся на обслуживании, не превосходит числа обслуживающих аппаратов:
Po где
3. Вероятность того, что в системе находится k требований в случаи, когда их число больше числа обслуживающих каналов:
где
4. Вероятность того, что все обслуживающие каналы заняты:
5.Среднее время ожидания требованием начала обслуживания в системе:
6.Средняя длина очереди:
7.Среднее число свободных от обслуживания каналов:
8.Коэффициент простоя каналов:
.
9.Среднее число занятых обслуживанием каналов:
10.Коэффициент загрузки каналов: