Реферат: Правильные многогранники
Получаем правильный двадцатигранник. Этот многогранник называется правильным икосаэдром («икосаэдр » - двадцатигранник).
Таким образом, мы получили следующую теорему.
Теорема. Существует пять различных ( с точностью до подобия) типов
правильных многогранников: правильный тетраэдр, правильный гексаэдр
(куб), правильный октаэдр, правильный додекаэдр и правильный икосаэдр.
К этому заключению можно прийти несколько иначе.
Действительно, если грань правильного многогранника – правильный треугольник, и в одной вершине сходятся k ребер, т.е. все плоский углы выпуклого k -гранного угла равны , то . Следовательно, натуральное число k может принимать значения: 3;4;5. при этом Г = , Р = . На основании теоремы Эйлера имеем: В+-= 2 или В ( 6 – k ) = 12. Тогда
при k = 3 получаем: В = 4, Г = 4 , Р = 6 (правильный тетраэдр);\
при k = 4 получаем: В = 6, Г = 8, Р = 12 (правильный октаэдр);
при k = 5 получаем: В = 12, Г = 20, Р = 30 (правильный икосаэдр).
Если грань правильного многогранника – правильный четырехугольник , то . Этому условию соответствует единственное натуральное число k = 3. Тогда: Г = , Р= ; В + - = 2 или . Значит, В = 8, Г = 6, Р = 12 – мы получаем куб (правильный гексаэдр).
Если гранью правильного многогранника является правильный пятиугольник, то . Этому условию соответствует тоже только k = 3 и Г = ; Р = . Аналогично предыдущим вычислениям получаем: и В = 20, Г = 12, Р = 30 (правильный додекаэдр).
Начиная с правильных шестиугольников, предположительно являющихся гранями правильного многогранника, плоские углы становятся не меньше , и уже k = 3 их сумма становится не менее , что невозможно. Следовательно, существует всего пять видов правильных многогранников.
На рисунках изображены разверстки каждого из пяти правильных многогранников.
Правильный тетраэдр
Правильный октаэдр
Правильный гексаэдр
Правильный икосаэдр
Правильный додекаэдр
Некоторые свойства правильных многогранников приведены в следующей таблице.
Вид грани |
Плоский угол при вершине |
Вид многогранного К-во Просмотров: 672
Бесплатно скачать Реферат: Правильные многогранники
|