Реферат: Предельные теоремы. Характеристические функции

1. Теорема Чебышева

Теория вероятностей изучает закономерности массовых случайных явлений. Если явление носит единичный характер, то теория вероятностей не может предсказать исход события.

Иное дело, когда явление – массовое. Закономерности проявляются именно при большом числе случайных событий, происходящих в однородных условиях.

При большом числе испытаний характеристики случайных событий и случайных величин практически мало изменяются, т.е. становятся неслучайными. Это обстоятельство позволяет использовать результаты наблюдений над случайными явлениями для предсказания результатов будущих испытаний.

В дальнейшем мы ознакомимся с двумя типами предельных теорем: законом больших чисел и центральной предельной теоремой. Закон больших чисел играет очень важную роль в практическом применении теории вероятностей к явлениям природы и техническим процессам, связанных с массовым производством.

Для доказательства этих теорем воспользуемся неравенством Чебышева.

Пусть mx и Dx – математическое ожидание и дисперсия случайной величины Х.

Тогда неравенство Чебышева гласит: вероятность того, что отклонение случайной величины от ее математического ожидания будет по абсолютной величине не меньше любого положительного числа , ограничена величиной , т.е.

Доказательство. Пусть Х – непрерывная случайная величина с плотностью распределения вероятностей f(x). По определению

(1)

Выделим на числовой оси интервал АВ, состоящий из точек

А В

х

Так как под интегралом в (1) находится неотрицательная величина, то, выбросив из интервала интегрирования отрезок АВ, мы значение интеграла не увеличим, т.е.

Так как теперь , то

Отсюда непосредственно и вытекает неравенство Чебышева.

Если Х – дискретная случайная величина, то доказательство неравенства Чебышева проводится по проделанной выше схеме с той лишь разницей, что вместо интеграла нужно записать сумму.

Так как

,

то неравенство Чебышева можно записать в другом виде

Если взять , то получим, что неравенство Чебышева дает оценку

,

что заведомо выполняется, т.к. вероятность

С другой стороны, если взять , то

,

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 399
Бесплатно скачать Реферат: Предельные теоремы. Характеристические функции