Реферат: Приближённое решение алгебраических и трансцендентных уравнений
Пример. Решить уравнение методом половинного деления с точностью до 0,001.
Решение. Известен отрезок изоляции корня и заданная точность . По уравнению составим функцию .
Найдём значения функции на концах отрезка:
, .
Проверим выполнение неравенства (1): - условие выполняется, значит можно применить метод половинного деления.
Найдём середину отрезка и вычислим значение функции в полученной точке:
, .
Среди значений и выберем два значения разных знаков, но близких друг к другу. Это и . Следовательно, из отрезков и выбираем тот, на концах которого значения функции разных знаков. В нашем случае это отрезок и опять находим середину отрезка и вычисляем значение функции в этой точке:
, , , - заданная точность результата не достигнута, продолжим вычисления.
, , , .
, , , .
, , , .
, , , .
, , , .
, , , .
, , , .
, , , .
, - заданная точность результата достигнута, значит, нашли приближённое значение корня .
Ответ: корень уравнения с точностью до 0,001.
5. Метод хорд (секущих).
Этот метод применяется при решении уравнений вида , если корень уравнения отделён, т.е. и выполняются условия:
1) (функция принимает значения разных знаков на концах отрезка );
2) производная сохраняет знак на отрезке (функция либо возрастает, либо убывает на отрезке ).
Первое приближение корня находится по формуле: .
Для следующего приближения из отрезков и выбирается тот, на концах которого функция имеет значения разных знаков.
Тогда второе приближение вычисляется по формуле:
, если или , если .
Вычисления продолжаются до тех пор, пока не перестанут изменяться те десятичные знаки, которые нужно оставить в ответе.
6. Метод касательных (Ньютона).
Этот метод применяется, если уравнение имеет корень , и выполняются условия:
1) (функция принимает значения разных знаков на концах отрезка );