Реферат: Приближённое решение алгебраических и трансцендентных уравнений
На отрезке выбирается такое число , при котором имеет тот же знак, что и , т. е. выполняется условие . Таким образом, выбирается точка с абсциссой , в которой касательная к кривой на отрезке пересекает ось . За точку сначала удобно выбирать один из концов отрезка.
Первое приближение корня определяется по формуле: .
Второе приближение корня определяется по формуле: .
Вычисления ведутся до совпадения десятичных знаков, которые необходимы в ответе, или при заданной точности - до выполнения неравенства .
Достоинства метода: простота, быстрота сходимости.
Недостатки метода: вычисление производной и трудность выбора начального положения.
7. Комбинированный метод хорд и касательных.
Если выполняются условия:
1) ,
2) и сохраняют знак на отрезке ,
то приближения корня уравнения по методу хорд и по методу касательных подходят к значению этого корня с противоположных сторон. Поэтому для быстроты нахождения корня удобно применять оба метода одновременно. Т.к. один метод даёт значение корня с недостатком, а другой – с избытком, то достаточно легко получить заданную степень точности корня.
Схема решения уравнения методом хорд и касательных
1. Вычислить значения функции и .
2. Проверить выполнение условия . Если условие не выполняется, то неправильно выбран отрезок .
3. Найти производные и .
4. Проверить постоянство знака производных на отрезке . Если нет постоянства знака, то неверно выбран отрезок .
5. Для метода касательных выбирается за тот из концов отрезка , в котором выполняется условие , т.е. и одного знака.
6. Приближения корней находятся:
а) по методу касательных: ,
б) по методу хорд: .
7. Вычисляется первое приближение корня: .
8. Проверяется выполнение условия: , где - заданная точность.
Если условие не выполняется, то нужно продолжить применение метода по схеме 1-8.
В этом случае отрезок изоляции корня сужается и имеет вид . Приближённые значения корня находятся по формулам:
и .
Вычисления продолжаются до тех пор, пока не будет найдено такое значение , при котором и совпадут с точностью .
Пример. Решить уравнение методом хорд и касательных с точностью 0,001, если известно, что корень уравнения .
Решение.
1. Вычислим значения функции на концах отрезка: , .
2. Проверим выполнение условия: - условие выполняется.
3. Найдём производные: и .
4. На отрезке производные и , т.е. сохраняют знак, следовательно, условие выполняется.