Реферат: Приближённое решение алгебраических и трансцендентных уравнений
Пример. Решить уравнение
методом половинного деления с точностью до 0,001.
Решение.
Известен отрезок изоляции корня
и заданная точность
. По уравнению составим функцию
.
Найдём значения функции на концах отрезка:
,
.
Проверим выполнение неравенства (1): - условие выполняется, значит можно применить метод половинного деления.
Найдём середину отрезка и вычислим значение функции в полученной точке:
,
.
Среди значений
и
выберем два значения разных знаков, но близких друг к другу. Это
и
. Следовательно, из отрезков
и
выбираем тот, на концах которого значения функции разных знаков. В нашем случае это отрезок
и опять находим середину отрезка и вычисляем значение функции в этой точке:
,
,
,
- заданная точность результата не достигнута, продолжим вычисления.
,
,
,
.
,
,
,
.
,
,
,
.
,
,
,
.
,
,
,
.
,
,
,
.
,
,
,
.
,
,
,
.
,
- заданная точность результата достигнута, значит, нашли приближённое значение корня
.
Ответ: корень уравнения с точностью до 0,001.
5. Метод хорд (секущих).
Этот метод применяется при решении уравнений вида , если корень уравнения отделён, т.е.
и выполняются условия:
1) (функция
принимает значения разных знаков на концах отрезка
);
2) производная сохраняет знак на отрезке
(функция
либо возрастает, либо убывает на отрезке
).
Первое приближение корня находится по формуле: .
Для следующего приближения из отрезков и
выбирается тот, на концах которого функция
имеет значения разных знаков.
Тогда второе приближение вычисляется по формуле:
, если
или
, если
.
Вычисления продолжаются до тех пор, пока не перестанут изменяться те десятичные знаки, которые нужно оставить в ответе.
6. Метод касательных (Ньютона).
Этот метод применяется, если уравнение имеет корень
, и выполняются условия:
1) (функция принимает значения разных знаков на концах отрезка
);