Реферат: Приложения производной
Производная применяется в физике для нахождения скорости по известной функции координаты от времени, ускорения по известной функции скорости от времени.
u(t) = x'(t) - скорость,
a(f) = n'(t) - ускорение, или
a(t) = x"(t).
Если известен закон движения материальной точки по окружности, то можно найти угловую скорость и угловое ускорение при вращательном движении:
φ = φ(t) - изменение угла от времени,
ω = φ'(t) - угловая скорость,
ε = φ'(t) - угловое ускорение, или ε = φ"(t).
Если известен закон распределения массы неоднородного стержня, то можно найти линейную плотность неоднородного стержня:
m = m(х) - масса,
xÎ [0; l], l - длина стержня,
р = m'(х) - линейная плотность.
С помощью производной решаются задачи из теории упругости и гармонических колебаний. Так, по закону Гука
F = -kx, x – переменная координата, k- коэффициент упругости пружины. Положив ω2 =k/m, получим дифференциальное уравнение пружинного маятника х"(t) + ω2 x(t) = 0,
где ω = √k/√m частота колебаний (l/c), k - жесткость пружины (H/m).
Уравнение вида у" + ω2 y = 0 называется уравнением гармонических колебаний (механических, электрических, электромагнитных). Решением таких уравнений является функция
у = Asin(ωt + φ0 ) или у = Acos(ωt + φ0 ), где
А - амплитуда колебаний, ω - циклическая частота,
φ0 - начальная фаза.
4. Правила дифференцирования
(C)’= 0С=const | |
(cosx)'=-sinx | |
(sinx)'=cosx | |
(tgx)'= | (ах )'=аx lna |
(ctgx)'=- | (ех )'=ex |
Производная степенно-показательной функции
, где .
.
Логарифмическое дифференцирование. Пусть дана функция . При этом предполагается, что функция не обращается в нуль в точке . Покажем один из способов нахождения производной функции , если очень сложная функция и по обычным правилам дифференцирования найти производную затруднительно.
Так как по первоначальному предположению не равна нулю в точке, где ищется ее производная, то найдем новую функцию и вычислим ее производную
(1)
Отношение называется логарифмической производной функции . Из формулы (1) получаем
. Или