Реферат: Приложения производной

Производная применяется в физике для нахождения скорости по известной функции координаты от времени, ускорения по известной функции скорости от времени.

u(t) = x'(t) - скорость,

a(f) = n'(t) - ускорение, или

a(t) = x"(t).

Если известен закон движения материальной точки по окружности, то можно найти угловую скорость и угловое ускорение при вращатель­ном движении:

φ = φ(t) - изменение угла от времени,

ω = φ'(t) - угловая скорость,

ε = φ'(t) - угловое ускорение, или ε = φ"(t).

Если известен закон распределения массы неоднородного стержня, то можно найти линейную плотность неоднородного стержня:

m = m(х) - масса,

xÎ [0; l], l - длина стержня,

р = m'(х) - линейная плотность.

С помощью производной решаются задачи из теории упругости и гармонических колебаний. Так, по закону Гука

F = -kx, x – переменная координата, k- коэффициент упругости пружины. Положив ω2 =k/m, получим дифференциальное уравнение пружинного маятника х"(t) + ω2 x(t) = 0,

где ω = √k/√m частота колебаний (l/c), k - жесткость пружины (H/m).

Уравнение вида у" + ω2 y = 0 называется уравнением гармонических колебаний (механических, электрических, электромагнитных). Решени­ем таких уравнений является функция

у = Asin(ωt + φ0 ) или у = Acos(ωt + φ0 ), где

А - амплитуда колебаний, ω - циклическая частота,

φ0 - начальная фаза.

4. Правила дифференцирования

(C)’= 0С=const
(cosx)'=-sinx
(sinx)'=cosx
(tgx)'= х )'=аx lna
(ctgx)'=- х )'=ex

Производная степенно-показательной функции

, где .

.

Логарифмическое дифференцирование. Пусть дана функция . При этом предполагается, что функция не обращается в нуль в точке . Покажем один из способов нахождения производной функции , если очень сложная функция и по обычным правилам диф­фе­рен­цирования найти производную затруднительно.

Так как по первоначальному предположению не равна нулю в точке, где ищется ее производная, то найдем новую функцию и вычислим ее производную

(1)

Отношение называется логарифмической производной функции . Из формулы (1) получаем

. Или

К-во Просмотров: 892
Бесплатно скачать Реферат: Приложения производной