Реферат: Приложения производной
Выполнил: ученик 11А класса
Новиков А.
Проверила: Шекера Г.В.
г.Хабаровск
2004
Содержание
Введение……………………………………………………………………………………….…3
1. Понятие производной……………………………………………………....………………....4
2. Геометрический смысл производной…………………….………………….......……..4
3. Физический смысл производной……………………………………………………….…….5
4. Правила дифференцирования………………………………………………………….……..6
5. Производные высших порядков……………………………………………………….……..7
6. Изучение функции с помощью производной
6.1.Возрастание и убывание функции. Экстремум функции……………………………..8
6.2.Достаточные условия убывания и возрастания функции.
Достаточные условия экстремума функции………………..…………………...…….11
6.3 .Правило нахождения экстремума………………………………………………….....12
6.4.Точка перегиба графика функции………………………………………………...…...12
6.5.Общая схема исследования функции и построение ее графика……………………..15
6.5. Касательная и нормаль к плоской кривой…………………………..………………..15
7.Экономическое приложение производной.
7.1.Экономическая интерпретация производной………………………………...……….16
7.2. Применение производной в экономической теории...………………………..……..19
7.3. Использование производной для решения задач по экономической теории….…...21
8. Применение производной в физике…………………………………………………….…..23
9. Применение производной в алгебре
9.1. Применение производной к доказательству неравенств…………………………....25
9.2. Применение производной в доказательстве тождеств………………………….…...28
9.3. Применение производной для упрощения алгебраических
и тригонометрических выражений……………………………………………….……29
9.4.Разложение выражения на множители с помощью производной…………………...30
9.5. Применение производной в вопросах существования корней уравнений………....31
Заключение……………………………………………………………………………………...32
Список литературы……………………………………………………………………………..33
Введение
Понятие функции является одним из основных понятии математики. Оно не возникло сразу в таком виде, как мы им пользуемся сейчас, а, как и другие фундаментальные понятия прошло длинный путь диалектического и исторического развития. Идея функциональной зависимости восходит к древнегреческой математике. Например, изменение площади, объема фигуры в зависимости от изменения ее размеров. Однако древними греками идея функциональной зависимости осознавалась интуитивно.
Уже в 16 - 17 в. в, техника, промышленность, мореходство поставили перед математикой задачи, которые нельзя было решить имеющимися методами математики постоянных величин. Нужны были новые математические методы, отличные от методов элементарной математики.
Впервые термин "функция" вводит в рассмотрение знаменитый немецкий математик и философ Лейбниц в 1694 г. Однако, этот термин (определения он не дал вообще) он употребляет в узком смысле, понимая под функцией изменение ординаты кривой в зависимости от изменения ее абсциссы. Таким образом, понятие функции носит у него "геометрический налет". В современных терминах это определение связано с понятием множества и звучит так: «Функция есть произвольный способ отображения множества А = {а} во множество В = {в}, по которому каждому элементу аА поставлен в соответствие определенный элемент вВ. Уже в этом определении не накладывается никаких ограничений на закон соответствия (этот закон может быть задан Формулой, таблицей, графиком, словесным описанием). Главное в этом определении: аА!bB. Под элементами множеств А и В понимаются при этом элементы произвольной природы.
В математике XVII в. самым же большим достижением справедливо считается изобретение дифференциального и интегрального исчисления. Сформировалось оно в ряде сочинений Ньютона и Лейбница и их ближайших учеников. Введение в математику методов анализа бесконечно малых стало началом больших преобразований. Но наряду с интегральными методами складывались и методы дифференциальные. Вырабатывались элементы будущего дифференциального исчисления при решении задач, которые в настоящее время и решаются с помощью дифференцирования. В то время такие задачи были трех видов: определение касательных к кривым, нахождение максимумов и минимумов функций, отыскивание условий существования алгебраических уравнений квадратных корней.
Первый в мире печатный курс дифференциального исчисления опубликовал в 1696 г. Лопиталь. Этот курс состоит из предисловия и 10 глав, в которых излагаются определения постоянных и переменных величин и дифференциала, объясняются употребляющиеся обозначения dx, dy, и др.
Появление анализа бесконечно малых революционизировало всю математику, превратив ее в математику переменных величин.
Исследование поведения различных систем (технические, экономические, экологические и др.) часто приводит к анализу и решению уравнений, включающих как параметры системы, так и скорости их изменения, аналитическим выражением которых являются производные. Такие уравнения, содержащие производные, называются дифференциальными.
В своей же работе я хочу подробнее остановится на приложениях производной.
1. Понятие производной
При решении различных задач геометрии, механики, физики и других отраслей знания возникла необходимость с помощью одного и того же аналитического процесса из данной функции y=f(x) получать новую функцию, которую называют производной функцией (или просто производной) данной функции f(x) и обозначают символом
Тот процесс, с помощью которого из данной функции f(x) получают новую функцию f ' (x) , называют дифференцированием и состоит он из следующих трех шагов:
1) даем аргументу x приращение D x и определяем соответствующее приращение функции D y = f(x+ D x) -f(x) ;
2) составляем отношение
3) считая x постоянным, а D x ¦0, находим, который обозначаем через f ' (x) , как бы подчеркивая тем самым, что полученная функция зависит лишь от того значения x , при котором мы переходим к пределу.
: Производной y ' =f ' (x) данной функции y=f(x) при данном x называется предел отношения приращения функции к приращению аргумента при условии, что приращение аргумента стремится к нулю, если, конечно, этот предел существует, т.е. конечен.
Таким образом,, или
Заметим, что если при некотором значении x , например при x=a , отношениепри D x ¦0 не стремится к конечному пределу, то в этом случае говорят, что функция f(x) при x=a (или в точке x=a ) не имеет производной или не дифференцируема в точке x=a .
2. Геометрический смысл производной.
Рассмотрим график функции у = f (х), дифференцируемой в окрестностях точки x0
|
Рассмотрим произвольную прямую, проходящую через точку графика функции - точку А(x0 , f (х0 )) и пересекающую график в некоторой точке B(x;f(x)). Такая прямая (АВ) называется секущей. Из ∆АВС: АС = ∆x; ВС =∆у; tgβ=∆y/∆x .
Так как АС || Ox, то ÐALO = ÐBAC = β (как соответственные при параллельных). Но ÐALO - это угол наклона секущей АВ к положительному направлению оси Ох. Значит, tgβ = k - угловой коэффициент прямой АВ.
Теперь будем уменьшать ∆х, т.е. ∆х→ 0. При этом точка В будет приближаться к точке А по графику, а секущая АВ будет поворачиваться. Предельным положением секущей АВ при ∆х→ 0 будет прямая (a), называемая касательной к графику функции у = f (х) в точке А.
Если перейти к пределу при ∆х → 0 в равенстве tgβ =∆y/∆x, то получим или tga =f '(x0 ), так как a-угол наклона касательной к положительному направлению оси Ох , по определению производной. Но tga = k - угловой коэффициент касательной, значит, k = tga= f'(x0 ).
Итак, геометрический смысл производной заключается в следующем:
Производная функции в точке x0 равна угловому коэффициенту касательной к графику функции, проведенной в точке с абсциссой x0 .
3. Физический смысл производной.
Рассмотрим движение точки по прямой. Пусть задана координата точки в любой момент времени x(t). Известно (из курса физики), что средняя скорость за промежуток времени [t0 ; t0 + ∆t] равна отношению расстояния, пройденного за этот промежуток времени, на время, т.е.
Vср = ∆x/∆t. Перейдем к пределу в последнем равенстве при ∆t → 0.
limVср (t) = n(t0 ) - мгновенная скорость в момент времени t0 , ∆t → 0.
а lim = ∆x/∆t = x'(t0 ) (по определению производной).
Итак, n(t) =x'(t).
--> ЧИТАТЬ ПОЛНОСТЬЮ <--