Реферат: Применение УВМ при автоматизации сортовых прокатов
Глава 1 АВТОМАТИЧЕСКИЙ КОНТРОЛЬ
ТЕХНОЛОГИЧЕСКИХ ПАРАМЕТРОВ
1. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ
Задачей контроля (от французского controle—проверка чего-либо) является обнаружение событий, определяющих ход того или иного процесса. В случае, когда эти события обнаруживаются без непосредственного участия человека, такой контроль называют автоматическим .
Важнейшей составной частью контроля является измерение физических величин, характеризующих протекание процесса. Такие физические величины называются параметрами процесса. Металлургические процессы в основном характеризуются значениями таких физических величин (параметров), как температура, давление, расход и количество, химический состав и концентрация жидких, паровых и газовых сред; уровень жидкого металла и сыпучих материалов; гранулометрический состав (крупность) и влажность шихтовых материалов, давление (вакуум) в технологических линиях и агрегатах.
Измерением называют нахождение значения физической величины опытным путем с помощью специальных технических средств. Конечной целью любого измерения является получение количественной информации об измеряемой величине . В процессеизмерения устанавливается,во сколько раз измеряемая физическая величина больше или меньше однородной с нею в качественном отношении физической величины, принятой за единицу.
Число, выражающее отношение измеряемой величины к единице измерения, называется числовым значением измеряемой величины . Оно может быть целым илидробным, ноявляется отвлеченным числом. Значение величины, принятое за единицу измерения, называется размером этой величины.
Если Q-измеряемая физическая величина, |Q|-некоторый размер физической величины, принятой за единицу измерения, q — числовое значение величины Q в принятой единице измерения, то результат измерения величины Q может быть представлен следующим равенством:
Q=q |Q| (1)
Уравнение (1) называют основным уравнением измерения. Из него следует, что значение q зависит от размера выбранной единицы измерения |Q|. Чем меньше выбранная единица, тем больше для данной измеряемой величины будет числовое значение. Например, длина 1 м равна 10дм, 100 см и т.д.
Результат всякого измерения является именованным числом . Поэтому дляопределенности написания результата измерения рядом с числовым значением измеряемой величины ставится сокращенное обозначение принятой единицы измерения. С 1963 г. в СССР введена как предпочтительная Международная система единиц по ГОСТ 9867—61. которая сокращенно обозначается СИ. На основе учета результатов первого периода внедрения ГОСТ 9867—61 и принятого в 1978 г. Постоянной комиссией СЭВ по стандартизации стандарта СТ СЭВ 1052—78 «Метрология. Единицы физических величин» в СССР разработан ГОСТ 8.417—81 «ГСИ. Единицы физических величин» со сроком внедрения с 1 января 1982 г. СИ принята в большинстве стран мира (свыше 130) и признана всеми международными организациями.
Кратные и дольные единицы измерения образуются из наименований единиц СИ при помощи установленных ГОСТ 8.417—81 приставок для образования кратных и дольных единиц, приведенных в приложении 1.
Сведения о значениях измеряемых физических величин называют измерительной информацией.
Сигналом измерительной информации называется сигнал, функционально связанный с измеряемой физической величиной (например, сигнал от термометра сопротивления).
Средством измерения (СИ) называют техническое устройство, используемое при измерениях и имеющее нормированные метрологические свойства.
Сигнал измерительной информации, поступающий на вход средства измерений, называют входным сигналом, получаемый на выходе, - выходным сигналом средства измерений .
Для контроля параметров технологических процессов в большинстве случаев используется не одно, а несколько средств(измерения и преобразования сигналов, образующих канал измерения этого параметра.
Существуют три основные вида средств измерений: меры, измерительные преобразователи, измерительные приборы.
Мера —это средство измерения, предназначенное для воспроизведения физической величины заданного размера.
Меры бывают однозначные, и многозначные. Примерами однозначных мер являются: катушки сопротивления, катушки индуктивности, нормальные элементы и др. К многозначным мерам относятся: магазины сопротивлений, индуктивностей и емкостей, калибраторы напряжения и тока и др.
Измерительный преобразователь — это средство измерении, предназначенное для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и хранения, но не поддающейся непосредственному восприятию наблюдателем (в практике часто применяется термин «датчик»),
Измерительный преобразователь, к которому подведена измеряемая величина, т.е. первый в канале измерения (измерительной цепи), называется первичным измерительным преобразователем (или сокращенно первичным преобразователем). Например, сужающее устройство (диафрагма) для измерения расхода, электрод сигнализатора уровня и т.п.
В системах автоматического контроля применяются устройства для выдачи сигнала о выходе значения пари метра за установленные пределы. Причем сигнал появляется при наличии самого факта выхода независимо от его размера. Такие устройства называют датчиками-реле или сигнализаторами.
Для удовлетворения возросших потребностей промышленности создана Государственная система промышленных приборов и средств автоматизации (ГСП), представляющая собой эксплуатационно, информационно, энергетически, метрологически и конструктивно организованную совокупность средств измерений, средств автоматизации,, средств управляющей вычислительной техники, а также программных средств, предназначенных для построения автоматических и автоматизированных систем измерения, контроля, регулирования, диагностики и управления производственными процессами, технологическими линиями и агрегатами (ГОСТ 26.207—83. ГСП. Основные положения). Номенклатура технических средств ГСП в настоящее время насчитывает свыше 2 тыс. типов изделий, организация ГСП дает возможность создавать самые разнообразные, любой сложности системы автоматического контроля, регулирования и управления из стандартизованных средств измерения и средств автоматизации.
В зависимости от вида энергии питания, входных и выходных сигналов ГСП разделяют на электрическую, пневматическую и гидравлическую ветви. В основном применяют средства электрической и изредка пневматической ветвей ГСП, которыми предусмотрены общепромышленные унифицированные электрические и пневматические сигналы передачи информации со следующими (пределами) измерений:
сигнал постоянного тока 0—5; 5—0—5; 0—20; 4—20 мА;
сигнал напряжения постоянного тока 0—1; 1—0—1;
0-Ю; Ю—0—10В;
сигнал напряжения переменного тока частотой 50 и 400 Гц 0,25—0—0,25; 0—0,5; 1—0—1; 0—2 В (у приборов с сигналами напряжения переменного тока частотой 50 и 400 Гц, основанных на измерении взаимной индуктивности, пределы измерения взаимной индуктивности выбираются из ряда 0—10; 10—0—10; 0—20 МГн при номинальном токе питания 0,125 или 0,32 А. Противоположные значения взаимной индуктивности получаются при перемене фазы напряжения питания на 180°);
частотный сигнал переменного тока {наиболее широко применяется сигнал с диапазоном частот 4—8 кГц);