Реферат: Принятие управленческих решений с использованием моделей выбора оптимальных стратегий в условиях полной неопределенности
В силу (10), критерий Вальда является критерием крайнего пессимизма игрока А, а количественным выражением этого крайнего пессимизма является значение коэффициента l1, равное 1. Игрок А, принимая решение, действует по принципу наибольшей осторожности.
Хотя арабская пословица и гласит: «Кто боится собственной тени, тому нет места под солнцем», - тем не менее этот критерий уместен в тех случаях, когда игрок А не столько хочет выиграть, сколько не хочет проиграть. Использование принципа Вальда в обиходе подтверждается такими поговорками как «Семь раз отмерь – один раз отрежь», «Береженого Бог бережет», «Лучше синица в руках, чем журавль в небе».
Критерий Ходжа-Лемана [7].
1) Предположим, что матрицей выигрышей игрока А является матрица А.
2) Известны вероятности qi=p(Пj), j=1,…,n, состояний природы Пj, j=1,…,n, удовлетворяющие условию (1).
Таким образом, игроку А надлежит принимать решение в условиях риска.
3) Пусть l=2,
(11) |
· показатель эффективности стратегии Аi по критерию Вальда,
(12) |
· показатель эффективности стратегии Аi по критерию Байеса.
Матрица В примет вид
В= |
т.е. bi1=Wi, bi2=Bi, i=1,…,m.
4) Коэффициенты l1, l2 выбираются следующим образом:
l1=1-l, l2=l, где lÎ[0, 1]. | (13) |
Очевидно, что эти коэффициенты удовлетворяют условию (2).
5) По формуле (3), с учетом (11), (12), и (13), показатель эффективности стратегии Аi по критерию Ходжа-Лемана равен:
Gi=libi1+l2bi2=(1-l)Wi+lBi=(1-l)aij+ i=1,…,m. | (14) |
В правой части формулы (14) коэффициент lÎ[0, 1] есть количественный показатель степени доверия игрока А данному распределению вероятностей qi=p(Пj), j=1,…,n, состояний природы Пj, j=1,…,n, а коэффициент (1-l) характеризует количественно степень пессимизма игрока А. Чем больше доверия игрока А данному распределению вероятностей состояний природы, тем меньше пессимизма и наоборот.
6) Цену игры по критерию Ходжа-Лемана находим по формуле (4):
7) Оптимальной стратегией по критерию Ходжа-Лемана является стратегия Аk с наибольшим показателем эффективности:
Gk=G.
Отметим, что критерий Ходжа-Лемана является как-бы промежуточным критерием между критериями Байеса и Вальда. При l=1, из (14) имеем:Gi=Bi и потому критерий Ходжа-Лемана превращается в критерий Байеса. А при l=0, из (14): Gi=Wi и, следовательно, из критерия Ходжа-Лемана получаем критерий Вальда.
Критерий Гермейера [7].
1) Пусть матрица А является матрицей выигрышей игрока А.
2) Даны вероятности qi=p(Пj), j=1,…,n, состояний природы Пj, j=1,…,n, удовлетворяющие условию (1).
Т.о. игрок А находится в ситуации принятия решений в условиях риска
3) Положим l=1 и
(15) |
Таким образом, матрица В представляет собой вектор столбец
В= |
размера m x 1.
4) Полагаем l1=1. Условие (2), очевидно, выполняется.
5) Показатель эффективности стратегии Аi по критерию Гермейера определяем по формуле (3) с учетом (15) и того, что l1=1:
(16) |