Реферат: Принятие управленческих решений с использованием моделей выбора оптимальных стратегий в условиях полной неопределенности
6) Цена игры по критерию Гермейера определяется по формуле (4):
7) Оптимальной стратегией по критерию Гермейера считается стратегия Аk с наибольшим показателем эффективности:
Gk= G
Заметим, что критерий Гермейера можно интерпретировать как критерий Вальда, применимый к игре с матрицей
Критерий Гермейера так же, как и критерий Вальда является критерием крайнего пессимизма игрока А, но, в отличие от критерия Вальда, игрок А, принимая решение с максимальной осмотрительностью, учитывает вероятности состояний природы.
В случае равномерного распределения вероятностей состояний природы: qj=n-1, j=1,…,n, показатель эффективности стратегии Аi, в силу формулы (16), будет равен Gi=n-1aij и , следовательно, критерий Гермейера эквивалентен критерию Вальда, т.е. стратегия, оптимальная по критерию Гермейера, оптимальна и по критерию Вальда, и наоборот.
Критерий произведений [7].
1) Пусть матрицей выигрышей игрока А является матрица А, все элементы которой положительны:
aij>0, i=1,…,m; j=1,…,n.
2) Известны вероятности qj=p(Пj), j=1,…,n, состояний природы Пj, j=1,…,n, и удовлетворяют условию (1).
3) Пусть l=1 и
(17) |
Значит матрица В является вектор-столбцом
В= |
размера m x 1.
4) Пусть l1=1. Условие (2) выполняется.
5) Показатель эффективности стратегии Аi по критерию произведений в соответствии с формулами (3) и (17) равен
.
6) Цена игры по критерию произведений вычисляется по формуле (4):
7) Оптимальной стратегией по критерию произведений является стратегия Аk с наибольшим показателем эффективности:
Gk=G.
Отметим, что для критерия произведений является существенным положительность всех состояний вероятностей состояний природы и всех выигрышей игрока А.
Максимаксный критерий ( [1].-[7] ).
1) Пусть А – матрица выигрышей игрока А.
2) Вероятность состояний неизвестны. Решение принимается в условиях неопределенности.
3) Пусть l=1 и
(18) |
Значит, матрица В является вектор- столбцом
Вmx1= |
размера m x 1.