Реферат: Программирование различных типов задач
Доказательство. Данный алгоритм не может вычеркнуть простое число, так как если число вычеркивается, то оно заведомо делится на какое-то другое, не равное ему. Теперь докажем по индукции, что для любого N алгоритм обводит все простые числа, не превосходящие N. База: при N = 2 утверждение верно, так как 2 будет обведено на 1-м шаге. Индуктивный переход: пусть утверждение верно при 2 <= N <= k-1. Рассмотрим N = k. Если N – составное, то у числа N есть простой делитель t, в качестве которого можно взять, например, его минимальный делитель (почему?). По индукции, на каком-то шаге число t будет обведено, на этом же шаге будет вычеркнуто N. Если же N – простое, то оно не может быть вычеркнуто, поэтому на каком-то шаге станет минимальным из оставшихся и будет обведено. Утверждение доказано.
Приведенные соображения реализованы в алгоритме:
FillChar(B, SizeOf(B), True);
For j:= 2 to N do
If B[j] then
Begin
WriteLn(j, ‘ – простое ’);
i:= 2*j;
While i <= N do begin
B[i]:= False;
i:= i+j;
End;
end;
2) Будем хранить в массиве уже найденные простые числа. Рассматривая очередное число X, будем делить его на все уже полученные простые числа, не превосходящие Trunc(Sqrt(X)).
Доказательство. Корректность работы алгоритма следует из того, что, если число – составное, то оно обязательно имеет простой делитель, не превосходящий корня из этого числа.
Основная теорема алгебры.
Всякое число N представимо в виде произведения простых сомножителей, причем такое представление единственно с точностью до порядка сомножителей.
Доказательство. Для доказательства существования разложения воспользуемся индукцией по N с учетом, что любое число либо является простым, либо имеет простой делитель (проведите сами). Докажем единственность. Предположим, что N = p1p2…pk = t1t2…tl, где все сомножители – простые числа, причем p1<=…<=pk и t1<=…<=tl. С учетом соображений индукции, достаточно доказать, что p1 = t1 (почему?). Предположим противное и пусть, для определенности, p1 < t1. Так как t1, …, tl – простые, то p1 не является делителем каждого из этих чисел. Тем не менее p1 – делитель их произведения. Поэтому должны существовать числа a1, b1, …, al, bl такие, что a1b1 = t1, …, albl = tl, a1a2…ak = p1. Но, так как любое ai = 1 или ai = ti (ведь ti – простое число), то a1a2…ak либо равно 1, либо не меньше t1, что заведомо меньше, чем p1. Противоречие.
Из доказательства теоремы следует следующий алгоритм нахождения разложения числа на простые множители:
D:= 2;
While d <= Trunc(Sqrt(N)) do begin
While N mod d = 0 do begin
WriteLn(d);
N:= N div d;
end;
If d = 2 then d:= 3
else d:= d+2;
end;
If N <> 1 then WriteLn(N);
НОД и НОК
Если число c является делителем a и b, то говорят, что число c является общим делителем чисел a и b. Число d называют наибольшим общим делителем (НОД) чисел a и b, если d – общий делитель a и b и любой общий делитель a и b является делителем d.