Реферат: Программная реализация модального управления для линейных стационарных систем

Постановка задачи:

1. Для объекта управления с математическим описанием

, (1) - задано,

где - n-мерный вектор состояния, ,

- начальный вектор состояния,

- скалярное управление,

- матрица действительных коэффициентов,

- матрица действительных коэффициентов,

найти управление в функции переменных состояния объекта, т.е.

, (2)

где- матрица обратной связи, такое, чтобы замкнутая система была устойчивой.

2. Корни характеристического уравнения замкнутой системы

(3)

должны выбираться по усмотрению (произвольно) с условием устойчивости системы (3).

Задание:

1. Разработать алгоритм решения поставленной задачи.

2. Разработать программу решения поставленной задачи с интерактивным экранным интерфейсом в системах BorlandPascal, TurboVision, Delphi - по выбору.

3. Разработать программу решения систем дифференциальных уравнений (1) и (3) с интерактивным экранным интерфейсом.

4. Разработать программу графического построения решений систем (1) и (3) с интерактивным экранным интерфейсом.

Введение

Наряду с общими методами синтеза оптимальных законов управления для стационарных объектов всё большее примене­ние находят методы, основанные на решении задачи о размеще­нии корней характеристического уравнения замкнутой системы в желаемое положение. Этого можно добиться надлежащим выбором матрицы обратной связи по состоянию. Решение ука­занной задачи является предметом теории модального управ­ления (термин связан с тем, что корням характеристического уравнения соответствуют составляющие свободного движения, называемые модами).

Алгоритм модального управления.

Соглашения:

· Задаваемый объект управления математически описывается уравнением

, (1)

где и - матрицы действительных коэффициентов,

- n-мерный вектор состояния

- скалярное управление,

- порядок системы (1).

· Обратная связь по состоянию имеет вид

, (2)

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 1660
Бесплатно скачать Реферат: Программная реализация модального управления для линейных стационарных систем