Реферат: Программная реализация модального управления для линейных стационарных систем
· Система с введенной обратной связью описывается уравнением
(3)
· Характеристическое уравнение системы (1) имеет вид
(4)
· Характеристическое уравнение системы (3) с задаваемыми (желаемыми) корнями имеет вид
(5)
Алгоритм:
1. Для исходной системы (1) составляем матрицу управляемости
2. Обращаем матрицу , т.е. вычисляем .
Если не существует (т.е. матрица - вырожденная), то прекращаем вычисления: полное управление корнями характеристического уравнения (5) не возможно.
3. Вычисляем матрицу
4. Составляем матрицу
5. Вычисляем матрицу, обратную матрице , т.е.
6. Вычисляем матрицу - матрицу в канонической форме фазовой переменной:
где - коэффициенты характеристического уравнения (4).
Матрица в канонической форме имеет вид
7. Составляем вектор , элементам которого являются коэффициенты характеристического уравнения (4), т.е. , ,
где - элементы матрицы .
8. Находим коэффициенты характеристического уравнения (5) (см. пояснения) и составляем из них вектор .
9. Вычисляем вектор .
- искомая матрица обратной связи системы (3), но она вычислена для системы, матрицы которой заданы в канонической форме фазовой переменной ( и ).
10. Для исходной системы (3) матрица обратной связи получается по формуле
Матрица - искомая матрица обратной связи.
Пояснения к алгоритму: