Реферат: Производная и ее применение в экономической теории

1) производная функции f'(x0 ) не существует;

2) f'(x0 )=0 .

Точки, в которых производная функции обращается в нуль или не существует, называются критическими точками (первого рода). Экстремум функции, если он существует, может быть только в критических точках. Однако не во всякой критической точке функция имеет экстремум. Поэтому, чтобы выяснить, в каких точках функция имеет экстремум, необходимо знать достаточные условия существования экстремума.

Первое достаточное условие экстремума. Пусть функция y=f(х) непрерывна в точке х0 и в некоторой её - окрестности имеет производную, кроме, быть может, самой точки х0 . Тогда:

1) если производная f'(x) при переходе через точку х0 меняет знак с плюса на минус, то х0 является точкой максимума.

2) если производная f'(x) при переходе через точку х0 меняет знак с минуса на плюс, то х0 является точкой минимума.

3) если производная при переходе через точку х0 не меняет знак, то в точке х0 функция f(x) не имеет экстремума.

Второе достаточное условие экстремума. Если функция y=f(х) определена и дважды дифференцируема в некоторой окрестности точки х0 , причём f'(x0 )=0, а f''(x0 )0, то в точке х0 функция f(х) имеет максимум, если f''(x0 )<0, и минимум, если f''(x0 )>0.

3. Выпуклость графика функции

График функции y=f(х), х(a,b) называется выпуклым вверх (вогнутым вниз) на интервале (a,b), если график расположен ниже (точнее не выше) любой своей касательной. Сама функция f(х) также называется выпуклой вверх (вогнутой вниз).

График функции y=f(х), х(a,b) называется выпуклым вниз (вогнутым вверх) на интервале (a,b), если график расположен выше (точнее не ниже) любой своей касательной. Сама функция f(х) также называется выпуклой вниз (вогнутой вверх).

На интервале выпуклости вверх (вогнутости вниз) производная функции убывает. На интервале выпуклости вниз (вогнутости вверх) производная f'(x) возрастает.

Достаточное условие выпуклости графика функции. Если на интервале (a,b) дважды дифференцируемая функция y=f(х), х(a,b) имеет отрицательную (положительную) производную второго порядка, то график функции является выпуклым вверх (вниз).

Исследовать на выпуклость график функции y=f(х) означает найти те интервалы из области её определения, в которых вторая производная f''(x) сохраняет свой знак. Необходимо заметить, что f''(x) может менять свой знак лишь в точках, где f''(x)=0 или не существует. Такие точки принято называть критическими точками второго рода.


2. Экономический смысл понятия производной

2.1 Предельные величины

Если спросить экономиста “Что такое производная?”, то он ответит: «маржинализм». Слово «маржинализм» охватывает целый комплекс понятий в современной экономической науке.

В ХIХ в. в области экономической теории произошло событие, которое впоследствии привело к подлинному перевороту в методах экономического поведения людей или фирм, изменило характер научно-экономического мышления. Класс ическая наука обычно имела дело с о с редними величинами: с редняя цена, с редняя производительность труда и т.д. Но постепенно с ложилс я иной подход к анализу экономических процессов и явлений. Во второй половине ХIХ в. была сформулирована теория маржинализма . Классиками этой теории стали экономисты австрийской школы К. Менгер (1840-1921), Ф. фон Визер (1851-1926), Е. фон Бём-Баверк (1851-1914), а также английский экономист У.С. Джевонс (1835-1882).

"Marginal" в переводе с английского языка означает "находящийся на самом краю", "предельный", "граничный". К предельным величинам в экономике относятся: предельные издержки, предельный доход, предельная полезность, предельная производительность, предельная склонность к потреблению и т.д. Понятие предельных величин позволило создать совершенно новы й инс трумент исс ледования и опис ания экономических явлений, пос редством которого с тало возможно решать научные проблемы, прежде не решённые или решённые неудовлетворительно. Все эти величины самым тесным образом связаны с понятием производной. Предельные величины характеризуют не с ос тояние (как с уммарная или с редняя величины), а процесс, изменение экономического объекта. Следов атель но, производная высту пает как с кор ость изменения некотор ого экономического объекта (процесса) с течением времени или относитель но дру гого исследу емого фактора.

Конечно, экономика не всегда позволяет ис пользовать предельные величины в силу неделимости многих экономических расчетов, а также прерывности (дискретности) экономических показателей во времени (например, годовых, квартальных, месячных и т.д.). В то же время во многих случаях можно эффективно использовать предельные величины.

Рассмотрим ситуацию: пусть q – количество произведённой продукции, ТC(q) – соответствующие данному выпуску совокупные издержки (total costs), тогда Dq – прирост продукции, а DТС – прирост издержек производства.

Предельные издержки МС (marginal costs) выражают дополнительные затраты на производство каждой дополнительной единицы продукции. Другими словами,

где Используя равенство получим

Итак, предельные издержки есть не что иное, как первая производная от совокупных издержек, если последние представлены как функция от выпускаемого количества продукции.

Аналогичным образом определяются и многие другие экономические величины, имеющие предельный характер.

Предельная выручка MR (marginal revenue) – это дополнительный доход, полученный при переходе от производства n-ной к (n+1)-ой единице продукта. Она представляет собой первую производную от выручки:


.

К-во Просмотров: 749
Бесплатно скачать Реферат: Производная и ее применение в экономической теории