Реферат: Разработка программно-методического комплекса для анализа линейных эквивалентных схем в частотной области для числа узлов <=500

Пи = 0

Располагая в матрицах П и Г сначала столбцы, соответствующие ветвям-ребрам, а затем столбцы, соответствующие ветвям- хордам, можно записать:

П = [E, Пх] Г = [Гр, Е]

где Пх содержит столбцы, соответствующие хордам; матрица Гр - столбцы, соответствующие ребрам, а Е - единичные матрицы [размерность матрицы Е, входящей в П, (L-1)*(L-1), а входящей в Г, (b-(L-1))*(b-(L-1))].

Матрицы Гр и Пх связаны следующим соотношением:

Гр=-Пx т , где т - знак транспонирования матрицы, или, обозначая Гр=F, получаем Пх=-Fт .

Если для расчета электрической схемы за искомые переменные принять токи i и напряжения u ветвей, то уравнения:

Ai = 0 или Пi = 0

Гu = 0 Гu = 0

совместно с компонентами уравнений:

Fj (I,U,dI/dt,dU/dt,x,dX/dt,t)=0

составят полную систему уравнений относительно 2b переменных.

То есть полная система в общем случае представляет собой набор обыкновенных линейных дифференциальных уравнений.(в случае линейных схем)

Число переменных и уравнений можно уменьшить следующим образом. Токи ребер Ip и напряжения хорд Ux можно выразить через токи хорд Ix и напряжения ребер Up:

Ip= F * Ix Ux = -Fu

Если подставить эти уравнения в уравнение:

Fj (I,U,dI/dt,dU/dt,x,dX/dt,t)=0

то число уравнений и переменных можно уменьшить до числа ветвей b.

Обозначения: L - число вершин (узлов),

b - число ветвей,

p - число ребер,

m - число хорд.

Для связного графа справедливы следующие отношения:

p = L - 1 m = b - (L-1)

хорда - ребро, не вошедшее в дерево.

Оценим эффективность использования вышеописанных матриц описания схем с точки зрения размерности, для ЭВМ это проблема экономии памяти.

Пусть имеем: число вершин (узлов) L = 500,

число ветвей b = 1000.

Оценим размеры матриц:

К-во Просмотров: 411
Бесплатно скачать Реферат: Разработка программно-методического комплекса для анализа линейных эквивалентных схем в частотной области для числа узлов <=500