Реферат: Разработка программно-методического комплекса для анализа линейных эквивалентных схем в частотной области для числа узлов <=500

Число переменных и уравнений можно уменьшить следующим образом. Токи ребер Ip и напряжения хорд Ux можно выразить через токи хорд Ix и напряжения ребер Up:

Ip= F * Ix Ux = -Fu

Если подставить эти уравнения в уравнение

то число уравнений и переменных можно уменьшить до числа ветвей b.

Обозначения: l - число вершин (узлов),

b - число ветвей,

p - число ребер,

m - число хорд.

Для связного графа справедливы следующие отношения:

p = L - 1 m = b - (L-1)

хорда - ребро, не вошедшее в дерево.

Оценим эффективность использования вышеописанных матриц описания схем с точки зрения размерности, для ЭВМ это проблема экономии памяти.

Пусть имеем: число вершин (узлов) L = 100,

число ветвей b = 155.

Оценим размеры матриц.

Инцидентности:

L * b = 100 * 155 = 15500

Главных сечений:

(L-1) * b = p * b = 99 * 155 = 15345

Главных контуров:

(b-(L-1)) * b = (b-p) * b = (155-(100-1)) * 155 = (155-99) * 155 = 8680

Из вышеприведенных нехитрых вычислений следует, что для описания схемы выгоднее использовать матрицу главных контуров.

2 - Эквив.схема преобразуется в программу решения линейных дифференциальных уравнений.

Для решения таких систем необходимо организовать иттерационный процесс, решая на каждом шаге иттераций систему линейных уравнений.

Схема организации вычислит. процесса:

Ввод исходной информации

Трансляция исходной информации.

Заполнение массивов в соответствии с

внутр. формой представления данных

К-во Просмотров: 419
Бесплатно скачать Реферат: Разработка программно-методического комплекса для анализа линейных эквивалентных схем в частотной области для числа узлов <=500