Реферат: Решение дифференциальных уравнений 1 порядка методом Эйлера
1.2. Составить блок-схему алгоритма для решения данного задания.
1.3. Разработать программу на языке MicrosoftVisualC++
1.4. Протестировать программу на примере y’=2x+y (n=5, [0,1], y0=1)
1.5. Выполнить анализ результатов.
1.6. Оформить пояснительную записку с приложением.
2.Обзор методов решения задачи.
2.1. Метод Рунге-Кутта четвертого порядка для решения уравнения первого порядка.
Идея Рунге-Кута состоит в том, чтобы использовать метод неопределённых коэффициентов. Наиболее употребительным методом Рунге-Кутта решения уравнения первого порядка y' = F(x,y) (2.1.1) является метод четвертого порядка, в котором вычисления производятся по формуле:
yk+1 = yk +(k1 +2k2 +2k3 +k4 )/6, (2.1.2)
где
k1 = Fk h = F(xk , yk )h
k2 = F(xk +h/2, yk +k1 /2)h
k3 = F(xk +h/2, yk +k2 /2)h
k4 = F(xk +h, yk +k3 )h,
k = 0, ..., n-1
h = (xf -x0 )/n (2.1.3)
2.2. Задача Коши.
Рассмотрим задачу Коши для уравнений первого порядка на отрезке [a,b]:
, (2.1.4)
Разобьём промежуток [a,b] на Nчастей . Обозначим , где u(x) –точное решение задачи Коши, и через значения приближенного решения в точках . Существует 2 типа численных схем :
1. явные: ) (2.2.1)
2. неявные: (2.2.2)
Здесь F некоторая функция, связывающая приближения. В явных схемах приближенное значение в точке определяется через некоторое число kуже определённых приближенных значений. В неявных схемах определяется не рекурентным способом, как в явных схемах, а для его определения возникает уравнение, поскольку равенство (2.2.2) представляет из себя именно уравнение на . Явные схемы проще, однако зачастую неявные схемы предпочтительнее.
2.3. Метод Булирша-Штера с использованием рациональной экстраполяции для системы уравнений
Метод Булирша-Штера (Bulirsch-Stoer Method) - это метод решения системы обыкновенных дифференциальных уравнений первого порядка с гладкими правыми частями. Гладкость правых частей является необходимой для работы метода. Если правые части вашей системы не являются гладкими или содержат разрывы, то лучше использовать метод Рунге-Кутта. В случае же гладкой системы метод Булирша-Штера позволяет добиться существенно большей точности, чем метод Рунге-Кутта.
Принцип работы метода
Основной идеей метода является вычисление состояния системы в точке x+h, как результата двух шагов длины h/2, четырех шагов длины h/4, восьми шагов длины h/8 и так далее с последующей экстраполяцией результатов. Метод строит рациональную интерполирующую функцию, которая в точке h/2 проходит через состояние системы после двух таких шагов, в точке h/4 проходит через состояние системы после четырех таких шагов, и т.д., а затем вычисляет значение этой функции в точке h = 0, проводя экстраполяцию.
Гладкость правых частей приводит к тому, что вычисленное при помощи экстраполяции состояние системы оказывается очень близко к действительному, а использование рациональной экстраполяции вместо полиномиальной позволяет ещё больше повысить точность.
Таким образом проводится один шаг метода, после чего принимается решение - следует ли изменять шаг, а если да - то в какую сторону. При этом используется оценка погрешности, которую мы получаем в качестве дополнительного результата при рациональной экстраполяции. Следует отметить, что алгоритм решает автономную систему, т.е. если уравнения системы содержат время, то необходимо ввести время в качестве переменной, производная от которой тождественно равна единице.
2.4 Метод Адамса
Явная схема Адамса.
Рассмотренные выше методы являются явными одношаговыми (для нахождения последующего приближения используется лишь одно предыдущее). Приведённый ниже метод является многошаговым.
Пусть задана задача Коши:
(2.4.1)