Реферат: Решение уравнений в конечных разностях
Основной проблемой процесса численного интегрирования является выбор величины шага h . Формула Эйлера вносит в процесс численного решения погрешность, пропорциональную h. Это несложно увидеть, если сравнить вычисляемое при интегрировании уравнения выражение с первыми слагаемыми ряда Тейлора для точки :
.
По Эйлеру
,
или иначе:
,
а по Тейлору:
,
или иначе:
.
Отбрасываемые члены разложения характеризуют погрешность формулы Эйлера, в которую входят слагаемые с h в первой степени и выше.
Результат интегрирования можно улучшить, если по найденному значению , вычислить значение производной, т.е. , и в формулу Эйлера ввести среднее арифметическое двух производных: для начала и для конца интервала . Модифицированная формула примет следующий вид:
Такого рода уточнения (итерации) можно повторять, пока в выражении
модуль разности станет .
Погрешность модифицированной формулы будет пропорциональна . Это показывается аналогично предыдущему сопоставлению.
Продифференцируем исходное уравнение
и подставим выражение производной в ряд Тейлора. В результате получим:
Аналогичное выражение для первых двух слагаемых и остаточного ряда второй степени от h получается и для модифицированной формулы Эйлера, если в последней осуществить разложение в ряд Тейлора по степеням h :
Усреднение производных с итерационным уточнением их для нескольких точек интервала особенно наглядно представлено в формулах Рунге-Кутта четвертого порядка :
где
Здесь производная вычисляется в трех точках интервала h (на концевых точках и дважды в средней точке интервала для итерационного уточнения), после чего окончательное приращение находится как взвешенное среднее.
4. Интерполяционные рекуррентные формулы
Достоинством методов Эйлера и Рунге-Кутта является их самоначинаемость независимо от порядка формулы, а основной недостаток в том, что число вычислений правой части неоднородной системы дифференциальных уравнений равно порядку формулы.
В этом плане выгодно отличаются формулы интегрирования, построенные на основе интерполяционных многочленов, опорными точками которого являются предыдущие, уже вычисленные значения переходного процесса. Широко используемым методом интегрирования с таким подходом могут служить формулы интегрирования Адамса.