Реферат: Решение задач по прикладной математике

Получена задача на нахождение условного экстремума. Для ее решения систему неравенств при помощи дополнительных неизвестных х3 , х4 , х5 заменим системой линейных алгебраических уравнений

1 +9х23 = 7710

1 +7х24 = 8910

1 +10х25 = 7800

где дополнительные переменные имеют смысл остатков соответствующих ресурсов, а именно

х3 – остаток сырья 1-го вида,

х4 – остаток сырья 2-го вида,

х5 – остаток сырья 3-го вида.

Среди всех решений системы уравнений, удовлетворяющих условию неотрицательности

х1 ≥0, х2 ≥0, х3 ≥0, х4 ≥0, х5 ≥0, надо найти то решение, при котором функция L=10х1 +22х2 будет иметь наибольшее значение.

Ранг матрицы системы уравнений равен 3.

5 9 1 0 0

А = 9 7 0 1 0

3 10 0 0 1

Следовательно, три переменные (базисные) можно выразить через две (свободные), т. е.

х3 = 7710 - 5х1 - 9х2

х4 = 8910 - 9х1 - 7х2

х5 = 7800 - 3х1 - 10х2

Функция L = 10х1 +22х2 или L - 10х1 - 22х2 = 0 уже выражена через эти же свободные переменные. Получаем следующую таблицу.

Таблица 1.

Базисные переменные

Свободные

члены

х1

х2

х3

х4

х5

х3

7710

5

9

1

0

0

х4

8910

9

7

0

1

0

х5

7800

3

10

0

0

1

L

0

-10

-22

0

0

0

Находим в индексной строке отрицательные оценки. Выбираем разрешающий элемент.

В результате получаем следующую таблицу.

Таблица 2.

Базисные переменные

Свободные

члены

х1

х2

х3

х4

х5

х3

7710

5

9

1

0

0

х4

990

1

7/9

0

1/9

0

х5

7800

3

10

0

0

1

L

0

-10

-22

0

0

0

Таблица 3.

Базисные переменные

Свободные

К-во Просмотров: 248
Бесплатно скачать Реферат: Решение задач по прикладной математике