Реферат: Решение задач с помощью ортогонального проектирования

Список литературы. 36

Введение.

Выбранная для реферата тема «Решение задач с помощью ортогонального проектирования» актуальна для многих выпускников и поступающих в высшие учебные заведения.

Несмотря на то, что в методических рекомендациях по решению экзаменационных задач по геометрии говорится, что для них не требуется сложных рассуждений, преобразований и остроумия, но часто приобретенных навыков в школе не хватает для решения задач на построение и вычислительных задач. Многие из них на сегодняшний день полностью отсутствуют или редко встречаются в учебниках. Это относится в первую очередь к заданиям на применение ортогонального проецирования.

Рассмотренный в данном реферате материал позволяет получить более глубокие знания по стереометрии, широкое понимание поставленного вопроса. Особое внимание уделено полноте рассуждения, в котором применялись базовые знания начертательной геометрии. При решении задач активно использовался аппарат ортогонального проектирования. Это осуществляется применением вычислительного способа и способа выносных чертежей. В реферате также присутствует и координатный способ решения. Акцентируется внимание на решении задач по построению прямой, изображений фигур, вычислению расстояний и углов.

1.1. Метод параллельного проецирования.


Дана плоскость α и прямая l , задающая направление проецирования. Зададим фигуру, которую надо спроектировать (отрезок AB). Через точки А и В проведем прямые, параллельные l и пересекающие плоскость α в точках A’, B’. Отрезок A’ B’ – проекция АВ на плоскость α (рис.1). Обозначается A’ B’ =пр α AB.

Свойства параллельной проекции.

1) Проекцией точки является точка.

2) Проекцией прямой является прямая – свойство прямолинейности.

3) Проекцией точки, лежащей на некоторой прямой, является точка, лежащая на проекции данной прямой – свойство принадлежности.

4) Проекциями параллельных прямых являются параллельные прямые – свойство сохранения параллельности.

5) Отношение проекций отрезков, лежащих на параллельных прямых или на одной и той же прямой, равно отношению самих отрезков.

6) Проекция фигуры не меняется при параллельном переносе плоскости проекций.

1.2. Ортогональная проекция.

Ортогональное проецирование является частным случаем параллельного проецирования, когда направление проецирования S перпендикулярно плоскости проекции П’.


? ???? ?????? ???????? ?????????? ??????????? ????? ?????? ???????????? ??????? ? ?????? ??? ????????. ???? ??????? AB ???????? ? ?????????? ???????? ???? α, ??, ??????? AB*║A? B? (???.2), ??????? ?? ?????????????? ???????????? AB*B, ??? AB*=ABcos α ??? A? B?= ABcos α.

Так как ортогональное проецирование – разновидность параллельного, то ему присущи те же свойства.

1.3. Комплексный чертеж точки.

Наибольшее применение получил чертеж, составленный из двух или более связанных между собой ортогональных проекций изображаемого оригинала. Такой чертеж называется комплексным.

Принцип образования такого чертежа состоит в том, что данный оригинал проецируется ортогонально на две взаимно перпендикулярные плоскости проекций, которые затем соответствующим образом совмещают с плоскостью чертежа. Одна из плоскостей проекции П1 располагается горизонтально и называется горизонтальной плоскостью проекций. Плоскость П2 , которая располагается вертикально, называется фронтальной плоскостью проекций (рис. 3).


Прямую пересечения плоскостей проекций называют осью проекций.

Спроектируем ортогонально на плоскости проекций П1 и П2 какую-нибудь точку А, тогда получим две ее проекции: горизонтальную проекцию А1 на плоскости П1 и фронтальную проекцию А2 на плоскости П2 .

Проектирующие прямые АА1 и АА2 , при проекции которых точка А проектируется на плоскости проекций, определяют проецирующую плоскость А1 АА2 , перпендикулярную к обеим плоскостям проекций и к оси проекций х . Прямые Ах А1 и Ах А2 , являющиеся проекциями проецирующей плоскости на плоскостях проекций П1 и П2 , будут перпендикулярны к оси проекций х .

Расстояние А1 А точки А от горизонтальной плоскости проекций называется высотой h точки А, ее расстояние А2 А от фронтальной плоскости проекций – глубиной f точки А.

Чтобы получить плоский чертеж, совместим плоскость проекций П1 с плоскостью П2 , вращая плоскость П1 вокруг оси х в направлении, указанном на рис. 3, а. В результате получим комплексный чертеж точки А (рис. 3, б), состоящий из двух проекций А1 и А2 точки А, лежащих на одной прямой, перпендикулярной к оси х . Прямая А1 А2 , соединяющая две проекции точки, называется линией связи.

1.4. Комплексный чертеж прямой.

Прямая линия определяется двумя точками, поэтому на комплексном чертеже всякая прямая l может быть задана проекциями А1 , А2 и В1 , В2 двух ее точек А и В (рис. 4, а, б). А так как ортогональная проекция обладает свойствами прямолинейности и принадлежности, то прямая l на комплексном чертеже задается и ее проекциями l 1 , l2 ; они будут прямыми, проходящими через точки А1 , В1 , А2 , В2.


Для деления данного отрезка АВ в данном отношении достаточно разделить в этом отношении одну из проекций данного отрезка, а затем спроецировать делящую точку на другую проекцию отрезка. На рис. 5 отрезок АВ разделен точкой М в отношении 2:3, первоначально в этом отношении была разделена проекция А1 В1 данного отрезка.

Определение натуральной величины отрезка прямой и его углов наклона к плоскостям проекций можно выполнить с помощью способа прямоугольного треугольника. Пусть дан отрезок АВ общего положения (рис. 6, а). Зафиксируем плоскость проекций П1 так, чтобы она прошла через один из концов отрезка, например через точку А, и из точки В восстановим перпендикуляр ВВ1 . Тогда получим прямоугольный треугольник АВ1 В, в котором гипотенузой является данный отрезок АВ, одним катетом является горизонтальная проекция А1 В1 отрезка АВ, а вторым катетом – высота h точки В. Угол, образованный отрезком АВ и его проекцией А1 В1 , является углом наклона отрезка АВ к плоскости проекций П1 .

К-во Просмотров: 302
Бесплатно скачать Реферат: Решение задач с помощью ортогонального проектирования