Реферат: Решение задачи линейного программирования симплекс-методом
Коэффициенты при
в целевой функции ПЗ становятся постоянными правой части ограничения ДЗ;
Постоянные ограничений ПЗ становятся коэффициентами целевой функции ДЗ.
Рассмотрим правила составления двойственной задачи:
Прямая задачаДвойственная задача
Остановимся более подробно на определении областей допустимых решений двойственных переменных при переходе от прямой задачи к двойственной.
Области допустимых решений для двойственных переменных
Вид ограничений прямой задачи, а также дополнительные и искусственные переменные, образующие начальный допустимый базис, определяют ОДР для соответствующих двойственных переменных.
1. Рассмотрим ограничение (2) прямой задачи:
Область допустимых решений ДП (
) определяется знаками ограничений (8) и (9) двойственной задачи и знаком ограничения (2) прямой задачи. Для определения ОДР
найдём ограничения ДЗ, соответствующие остаточным переменным ПЗ. Коэффициенты целевой функции для остаточных переменных равны нулю (
).Т. о., при решении задачи максимизации ограничениям прямой задачи, имеющим знак ограничения
, соответствуют неотрицательные двойственные переменные:
.
2. Рассмотрим ограничение (3) прямой задачи:
.
При введении искусственных переменных в целевую функцию вводятся коэффициенты штрафа М, поэтому для задачи максимизации получим:
.
Т. о., при решении задачи максимизации ограничениям прямой задачи, имеющим знак равенства, соответствуют двойственные переменные, не ограниченные в знаке .
3. Рассмотрим ограничение (4) прямой задачи:
В целевой функции избыточные переменные имеют коэффициенты, равные нулю (), а искусственные переменные коэффициенты, равные величине штрафа со своим знаком, в результате для задачи максимизации получим:
Т. о., при решении задачи максимизации ограничениям прямой задачи, имеющим знак , соответствуют неположительные двойственные переменные
.
4. Если в прямой задаче есть переменная, неограниченная в знаке, то в двойственной задаче получатся два ограничения, имеющие одинаковые коэффициенты при двойственных переменных, но разные знаки ограничений. Для удобства решения эти ограничения сворачивают в одно со знаком равенства (тем самым число ограничений двойственной задачи сводится к числу исходных переменных прямой задачи).
По аналогии можно записать условия двойственной задачи при решении задачи минимизации. Для удобства пользования некоторые соотношения при переходе от прямой задаче к двойственной приведены в таблице.
Прямая задача | Двойственная задача | |||
Целевая функция | Ограничения | Целевая функция | Ограничения | Переменные |
Максимизация | ![]() | Минимизация | ![]() | ![]() |
= | ![]() | |||
![]() | ![]() | |||
Минимизация | ![]() | Максимизация | ![]() | ![]() |
= | ![]() | |||
![]() | ![]() |
В двойственной задаче переменные могут быть неотрицательными (), не ограниченными в знаке (
), неположительными (
). При решении ДЗ, как и ПЗ должны выполняться условия неотрицательности ограничений и переменных. Для представления двойственной задачи в стандартной форме используются следующие подстановки:
если переменная не ограничена в знаке, то
;
если , то
.
Такие подстановки следует использовать во всех ограничениях, содержащих эти переменные, а также в выражении для целевой функции.
После приведения ДЗ к стандартному виду используется симплекс - метод. Алгоритм получения решения тот же, что и для прямой задачи.
II. Практическая часть
1. Решение задачи линейного программирования графическим методом.