Реферат: Решетчатые фильтры для стационарных случайных процессов
1. Достоинства решетчатых фильтров
Построение АР модели или синтез АР фильтра требуют вычисления коэффициентов АР. Для этого необходимо обращать корреляционную матрицу, а эта операция, как правило, сопряжена с большим объемом вычислений.
Поиски эффективных алгоритмов вычисления коэффициентов АР привели к синтезу решетчатых структур. Решетчатые структуры могут быть реализованы в виде решетчатых фильтров (РФ). Параметрами РФ являются коэффициенты отражения и число звеньев фильтра. Коэффициенты отражения однозначно связаны нелинейными соотношениями с параметрами АР и определяются, в конечном счете, корреляционной функцией случайного процесса. Число звеньев РФ равно порядку АР модели. РФ, также как и АР фильтры, являются фильтрами предсказания, минимизирующими дисперсию ошибки предсказания.
Несмотря на то, что АР фильтры и РФ математически эквивалентны, между ними существует ряд различий, существенных с практической точки зрения. При цифровой реализации фильтров особое значение играет шум округления. Его появление связано с тем, что значения величин приходится представлять конечным числом разрядов. Как показывает опыт, в этом отношении РФ более эффективны. Объясняется это тем, что ошибки округления (i-1) – го звена в РФ частично компенсируются в i-м звене РФ, чего нет в АР фильтрах.
Другим существенным свойством цифровых фильтров является их чувствительность к квантованной форме представления параметров фильтра. Поэтому, естественно, возникает вопрос: насколько сильно зависят характеристики фильтра от отклонения величин параметров? Доказано, что РФ менее чувствительны к погрешностям квантования параметров по сравнению с фильтрами прямой реализации.
При синтезе РФ, состоящего из p звеньев, используются те же коэффициенты отражения, что и у (p-1) – звенного фильтра. В АР фильтре при увеличении числа звеньев фильтра приходится заново пересчитывать все коэффициенты АР фильтра. Следовательно, использование РФ для обработки случайных сигналов имеет ряд преимуществ, по сравнению с АР фильтрами.
2. Синтез решетчатого фильтра
Несмотря на близость РФ и АР фильтров, использование РФ требует введения новых понятий и соотношений, на основе которых выводится структура РФ. Прежде всего, необходимо остановиться на выводе рекуррентных соотношений, которые носят название алгоритма Левинсона-Дарбина. Алгоритм позволяет вычислять для р-го порядка коэффициенты АР и отражения РФ по найденным коэффициентам АР модели сигнала 1…р порядков.
По аналогии с фильтром прямого предсказания для сигнала, описываемого моделью АР р-го порядка, можно ввести фильтр обратного предсказания, описываемый выражением
, (1)
где – коэффициенты фильтра обратного предсказания, состоящего из р звеньев, – ошибка обратного предсказания на выходе р-го звена фильтра. Уравнение описывает регрессию значения случайного процесса на последующие .
Значения коэффициентов фильтра обратного предсказания находятся с помощью системы уравнений, аналогичной системе уравнений Юла-Уокера можно представить обобщенные уравнения Юла-Уокера в матричном виде
, (2)
где -квадрат СКО, равный дисперсии ошибки прямого предсказания, Rp – корреляционная матрица (p+1) – го порядка
. (3)
Чтобы не выходить за рамки общепринятых в теории решетчатых фильтров обозначений, в дальнейшем изложении будет использоваться замена и .
Умножив левую и правую части уравнения на, и усреднив, легко получить уравнение Юла-Уокера для фильтра обратного предсказания, аналогичное (3)
, (4)
где – дисперсия ошибки обратного предсказания на выходе p-го звена фильтра обратного предсказания. Объединив матричные уравнения (2) и (4) можно записать общее уравнение
. (5)
Очевидно, что для (р+1) – звенного фильтра должно так же выполняться соотношение типа
. (6)
От матричного уравнения (5) можно перейти к матричному уравнению (6) лишь в том случае, если коэффициенты фильтров прямого и обратного предсказания p-го порядка связаны с коэффициентами фильтра (p+1) – го порядка следующим образом
, (7)
где- некоторые, так называемые, коэффициенты отражения. Умножив справа левую и правую части матричного уравнения (7), на корреляционную матрицу можно показать, что коэффициенты отражения удовлетворяют соотношениям
, (8а)
. (8б)
Величины, входящие в соотношения (8а) и (8б), описываемые выражениями
, (9а)
--> ЧИТАТЬ ПОЛНОСТЬЮ <--