Реферат: Шпаргалка по высшей математике
14 (45). Прямая в пространстве. Виды уравнений прямой в пространстве.
Взаимное ур-е 2-х прямых в пространстве: а) пусть прямые заданы своими канонич.ур-ями: x-x1/L1=y-y1/m1=z-z1/n1,
x-x2/L2=y-y2/m2=z-z2/n2; где `q 1(L1;m1;n1), `q2 (L2;m2;n2)- направляющие векторы. Тогда прямые параллельны, если параллельны их направляющие векторы:`q1 úú`q2 ÞL1/L2=m1/m2=n1/n2. б) пусть прямые заданы аналогично случаю а). Две прямые ^ тогда и только тогда, когда их направляющие векторы перпендикулярны (`q1^`q2).
L1L2+m1m2+n1n2=0. Существуют следующие виды ур-ий прямой в пространстве: 1)Общее ур-е прямой : прямая задаётся как линия пересечения 2-х плоскостей.
{A1x+B1y+C1z+D1=0
{A2x+B2y+C2z+D2=0, где А1, В1,С1-непропорциональные коэффициентам А2, В2, С2.
2)Ур-е прямой, проходящей через две точки (выводится аналогично ур-ю прямой на плоскости):
x-x2/x2-x1=y-y2/y2-y1=z-z2/z2-z1.
3)Каноническое уравнение прямой в пространстве (ур-е прямой, проходящей ч/з заданную точку М0 (x0;y0;z0), параллельно направляющему вектору `q (l;m;n)):
x-x0 /l=y-y0 /m=z-z0 /n.
4)Параметрическое ур-е прямой : прямая задаётся при помощи точки, лежащей на прямой, и направляющего вектора. М0 (x0;y0;z0), `q (l;m;n).íx=x0+lt
íy=y0+mt
íz=z0+nt, t-параметр.
5)Угол между 2-мя прямыми в пространстве – это, практически, угол между их направляющими векторами:
Cosj=L1L2+m1m2+n1n2/Ö L1 2 +m1 2 +n1 2 *Ö L2 2 +m2 2 +n2 2 .
15 (46). Взаимное расположение прямой и плоскости.
1)Угол между прямой и плоскостью вычисляется по формуле: Cosj=|Al+Bm+Cn|¸ÖA2 +B2 +C2 *Öl2 +m2 +n2 . Где l, m, n- координаты направляющего вектора прямой; A, B, C- координаты `n. В этом случае прямая может быть задана каноническим или параметрическим ур-ем прямой, а плоскость – общим. 2)Прямая и плоскость в пространстве параллельны : тогда и только тогда, когда скалярное произведение направляющего вектора прямой и нормального вектора плоскости равно 0. `n(A,B,C)`q (l;m;n)Þ Ax+By+Cz+D=0 (общееур-еплоскости); x-x0 /l=y-y0 /m=z-z0 /n. Т.к. `n*`q=0 ÞAl+Bm+Cn=0. 3)прямая и плоскость в пространстве перпендикулярны : тогда и только тогда, когда направляющий вектор прямой и нормальный вектор плоскости коллинеарные (параллельны). Два вектора коллинеарны тогда и только тогда, когда их векторное произведение равно 0 или координаты пропорциональны. Т.к. `n*`q=0, А/l=B/m=C/n. 4)условия, при которых прямая принадлежит плоскости : а)скалярное произведение`n*`q=0, т.е. Al+Bm+Cn=0; б) при подстановке координат точки, лежащей на прямой, в общее ур-е плоскости получается верное равенствоÞAx0 +By0 +Cz0 +D=0
{x=x0+lt,
{y=y0+mt,
{z=z0+nt (параметрич. ур-е прямой).
5)точка пересечения прямой и плоскости: для того, чтобы найти координаты точки пересечения прямой и плоскости в пространстве, необходимо совместно решить систему, составленную из ур-ий: x-x0/l=y-y0/m=z-z0/n (канонич. ур-е прямой), Ax+By+Cz+D=0 (общее ур-е плоскости). Для того,чтобы решить такую систему необходимо перейти от канонич. ур-я к параметрическому: {x=x0+lt,
{y=y0+mt,
{z=z0+nt (параметрич. ур-е прямой)
{Ax+By+Cz+D=0.
16 (47). Кривые второго порядка. Окружность.
Кривой 2-го порядка называется линия, определяемая уравнением 2-ой степени относительно текущих декартовых координат. В общем виде ур-е принимает вид: Ax2 +2Bxy+Cy2 +2Dx+2Ey+F=0, где A, 2B, C, 2D, 2E, F- действительные числа. Кроме того, по крайней мере, одно из этих чисел ¹0. Окружность-множество точек, равно удалённых от данной точки (центра). Если обозначить через R радиус окр., а через С(x0,y0) –центр окружности, то исходя из этого определения :
Возьмём на окр. произвольную точку М (x,y). По определению, расстояние СМ= R. Выражу СМ ч/з координаты заданных точек: СМ =Ö (x-x0)2 +(y-y0)2 = RÞR 2 =( x - x 0)2 +( y - y 0)2 -ур-е окр. С центром в точке С(x0,y0). Это ур-е называется нормальным ур-ем окружности. Ax2 +2Bxy+Cy2 +2Dx+2Ey+F=0-ур-е второй степени с 2-мя переменными в общем виде. Ax2 ++Cy2 =d-кривая второго порядка, где А,В,С не равны 0 одновременно, т.е. А2 +В2 +С2 ¹0. x2 +y2 -2x0 x-2y0 y+x0 2 +y0 2 -R2 =0; B=0, A/1=C/1ÞA=C¹0 (т.к. A2 +B2 +C2 ¹0, B=0). Получаем ур-е: Ax 2 + Ay 2 + Dx + Ey + F =0- общее ур-е оркужности. Поделим обе части этого ур-я на А¹0 и, дополнив члены, содержащие x,y, до полного