Реферат: Сили тяжіння
Коефіцієнт k називається коефіцієнтом тертя. Він залежить від роду речовини і якості обробки поверхонь, що труть. В деякій мірі він залежить також від відносної швидкості ковзання і від зовнішніх умов (температури, вогкості і т. п.). Слід підкреслити, що коефіцієнт тертя є досить грубою характеристикою сил тертя. Визначається він експериментально по формулі (5). В технічних таблицях звичайно даються середні значення коефіцієнта тертя. Наприклад, для сталі по сталі k = 0,17 , для сталі по дереву k = 0,48. Тертя грає дуже велику роль в природі і техніці. За допомогою тертя здійснюється необоротний перехід всіх видів енергії в теплоту. Завдяки тертю може приходити в рух і зупинятися транспорт. Дія органів пересування і хапальних органів живих істот заснована на терті ковзання. Тертя утримує корені рослин в ґрунті, пісок – в залізничному насипі і т.п.
В сільськогосподарській практиці на відмінності значень коефіцієнта тертя у насіння різних зернових культур засновано розділення суміші цього насіння на складові частини. Суміш зерен, наприклад вівса і проса, поволі высыпается з бункера на нескінченну стрічку, розташовану під кутом до горизонту, що рухається. Кут нахилу стрічки підбирається так, щоб зерна вівса утримувалися на ній силою тертя і захоплювалися вгору, а зерна проса, у яких коефіцієнт тертя з матеріалом стрічки менше ніж у зерен вівса, ковзали по стрічці вниз. В результаті зерна вівса і проса зсипатимуться з різних сторін «стрічкового сепаратора».
В тих випадках, коли тертя грає шкідливу роль, його зменшують, поміщаючи між поверхнями, що труть, в'язку рідину (мастило). Тим самим зовнішнє тертя твердих тіл замінюють значно меншим внутрішнім тертям рідини .
Інший спосіб зменшення тертя — заміна ковзання коченням: застосування коліс, катків, кулькових і роликових підшипників. Коефіцієнт тертя кочення в десятки разів менше коефіцієнта тертя ковзання. Істотно, що сила тертя кочення обернено пропорційна радіусу тіла, що котиться. У зв'язку з цим у транспорту, призначеного для руху по поганих дорогах (у возів; наприклад), колеса мають великий радіус. Сила тертя кочення Fтр.к виражається формулою
де P — сила нормального тиску, R — радіус тіла, що котиться µ — коефіцієнт тертя, який залежить від властивостей матеріалу дотичних поверхонь; як видно з формули, μ має розмірність довжини.
В природі тертя кочення зустрічається рідко. Можна тільки вказати на шарообразность насіння деяких рослин (горох, каштан, горіх), сприяючу відкатуванню цього насіння на більш далекі відстані від материнської рослини.
Сили тяжіння (гравітаційні сили)
Вивчаючи рух небесних тіл і падіння тіл в земних умовах, Ньютон встановив закон всесвітнього тяжіння, згідно якому матеріальні точки притягуються одна до одної з силою F, пропорційної їх масам m1 і m2 і обернено пропорційної квадрату відстані r між ними:
Закон справедливий також для випадків взаємодії куль і взаємодії великої кулі з малим тілом. При цьому під г слід розуміти відстань між центрами кульок. Коефіцієнт γ = 6,67. 10-11 м3 /(кг . сек2 ) був визначений експериментально і названий гравітаційною постійною . Згідно формулі (6), гравітаційна постійна рівна вираженою в ньютонах силі тяжіння міждвома точковими масами в1 кг кожна, що знаходяться на відстані 1 м один від одного.
З формули (6) виходить, що сили тяжіння величезні для небесних тіл і нікчемні для молекул, атомів і інших елементарних частинок. Так, сила тяжіння між Землею і Місяцем має порядок 1020 н , а між двома майже дотичними (r = 3. 10-8см ) молекулами кисню — порядок 10-32 н .
Тяжіння між тілами здійснюється через простір, який, здавалося б, не заповнений ніяким матеріальним середовищем. Проте таке уявлення привело б до ідеалізму — до необхідності приписати здійснення взаємодії між тілами якомусь духовному початку. Згідно матеріалістичної філософії, взаємодія між матеріальними тілами може здійснюватися тільки матеріальним посередником. В даному випадку таким посередником є гравітаційне поле (поле сили тяжіння).
Гравітаційне поле є особливий вид матерії, за допомогою якого здійснюється взаємне тяжіння тел. Формально гравітаційне поле можна визначити як простір, в якому діють гравітаційні сили. Проте при цьому треба виразно уявляти, що поле матеріальне.
Все сказане повністю відноситься і до іншого виду взаємодії через простір — до електромагнітної взаємодії, яка буде розглянута пізніше. Взагалі сучасна фізика вважає, що існує два види матерії: речовина і поле. Властивості поля істотно відрізняються від властивостей речовини. Якщо речовина схильна дії деякого поля, то і саме воно здатне створювати таке поле. Тому всяку взаємодію тіл через простір можна схематично представити таким чином: перше тіло створює поле, яке діє на друге тіло; у свою чергу друге тіло діє своїм Шолом на перше тіло. Взаємостосунки поля з речовиною (частинками) досліджені ще далеко не достатньо.
Вивчення цих взаємостосунків складає одну з найважливіших проблем сучасної фізики. Повертаючись до закону всесвітнього тяжіння і застосовуючи його до випадку взаємодії земної кулі з тілами, розташованими поблизу земної поверхні, одержимо:
де М — маса Землі, R — її радіус, т — маса тіла, h — його висота над земною поверхнею. Оскільки R»h , той вираз сили тяжіння тіл до Землі можна представити у вигляді:
З іншого боку де g — прискорення вільного падіння тіл поблизу земної поверхні. З формул (7) і (8) слідує, що
оскільки γ, М і R — постійні величини. Таким чином, із закону всесвітнього тяжіння виходить, що поблизу Землі всі тіла падають з однаковим прискоренням g ≈ 9,8 l м/сек2 .
Строго кажучи, завдяки обертанню Землі навкруги своєї осі величина прискорення g не є постійною, а дещо змінюється залежно від широти і висоти місця. Приведене значення g відповідає широті 45° на рівні моря.
Доцентрова сила
Рівномірний рух тіла по колу характеризується, як ми бачили, доцентровим прискоренням. Сила будь-якої природи, що викликає це прискорення називається доцентровою силою. Вона прикладена до тіла, направлена до центру кола і, згідно другому закону Ньютона, рівна
де т — маса тіла, aц — доцентрове прискорення, v і ω — лінійна і кутова швидкості, R — радіус кола.
Доцентрова сила створюється зв'язком, що утримує тіло на колі; вона обумовлена реакцією зв'язку на прагнення тіла віддалитися від центру кола. Розглянемо як приклад рух кульки по колу на гумовому шнурку (мал. 3); Повідомимо кульку А швидкість v перпендикулярно до шнура (зв'язки) ОА , закріпленого в точці О. Шарик почне рухатися за інерцією прямолінійно, віддаляючись від точкиО. Прицьому шнур розтягуватиметься і виникаюча в ньому пружна сила, перешкоджаючи прямолінійному руху кульки, примусить кульку рухатися по спіралі, що розкручується. Коли зростаюча у міру розтягування шнура сила пружності стане достатньою для того,щоб перешкодити видаленню кульки від точкиО , він почне рухатися по колу радіусом R. Очевидно, що при цьому пружна сила зв'язку буде рівна доцентровій силі:
Таким чином, в даному випадку роль доцентрової сили грає сила пружності шнура.
Якщо з якої-небудь причини швидкість кульки зросте до значення v1 >v , то він знову почне віддалятися від центру О по спіралі, поки пружна сила шнура, що додатково розтягнувся, не примусить його рухатися по колу радіусом R1 >R . При цьому знову сила пружності зв'язку стане рівна доцентровій силі:
На цьому принципі засновано, наприклад, дію відцентрового регулятора (Уатта), в якому зв'язком вантажів з віссю обертання служить система шарнірно-важеля.
При деякій, достатньо великої, швидкості обертання шнур не витримає розтягування і розірветься, а кулька полетить прямолінійно — по дотичній до кола. Саме так летять розжарені частинки — іскри, що відриваються від точильного круга.
Розрив зв'язку може відбутися у махового колеса при дуже великій швидкості обертання. На розриві зв'язку заснована дія таких відцентрових механізмів , як, наприклад, сушильна машина, медогонка, молочний сепаратор, відцентровий насос (зокрема, повітряний насос віялки). В сушильній машині зв'язком є зчеплення води з тканиною, в медогонці — зчеплення меду із стільниками, в сепараторі — в'язкість молока, у відцентровому насосі — тертя води (або повітря) об лопаті насоса, що обертаються.