Реферат: Сили тяжіння
Прикладом природного відцентрового механізму може служити мак-самосейка. Верхівка розгойдуваної вітром рослини швидко описує кругові дуги. При цьому стигле насіння, пов'язане з коробочкою тільки тертям, розкидається через верхні отвори коробочки по дотичних до цих дуг.
Розглянемо ще один приклад — обертання еластичної гумової кулі з кутовою швидкістю ω навколо осі, що проходить через його центр (мал.4). В думках розіб'ємо кулю на маленькі частинки — кульки однакової маси і уявимо, що зчеплення між ними забезпечується гумовими шнурами (зв'язками), до яких ці кульки прикріплені. Оскільки маси і кутові швидкості у всіх кульок однакові, то, згідно формулі (10), найбільша доцентрова сила діятиме на кульки, які найбільш віддалені від осі обертання. Таких кульок найбільше в екваторіальному шарі кулі і найменше всього в «приполярних» шарах.
Тому зв'язки розтягнуться найбільше в екваторіальному шарі і менше всього в приполярних. В результаті куля приймеформу еліпсоїда обертання. Аналогічно деформується земна куля: він розтягнуть у екватора і приплюснуть у полюсів так, що екваторіальний радіус на 1/300 більше полярного.
На закінчення відзначимо, що, згідно третьому закону Ньютона, разом з доцентровою силою, прикладеною до тіла, виникає рівна їй по величині, але протилежно направлена сила, прикладена до зв'язку; вона називається відцентровою силою.
Інерціальні і неінерціальні системи відліку. Сили інерції
Система відліку, що рухається (щодо зірок) рівномірно і прямолінійно (тобто за інерцією), називається інерціальною . Очевидно, що таких систем відліку – незліченна множина, оскільки будь-яка система, що рухається щодо деякої инерциальной системи відліку рівномірно і прямолінійно, теж буде инерциальной. Системи відліку, що рухаються (щодо инерциальной системи) з прискоренням, називаються неинерциальными.
Досвід показує, що у всіх і нерц і альн и х системах відліку всі механічні процеси протікають абсолютно однаково (за однакових умов). Цеположення, назване механічним принципом відносності ( або принципом відносності Галілея), було сформульовано в 1636 р. Галілеєм. Галілей пояснював даний принцип на прикладі механічних процесів, що скоюються в каюті корабля, що пливе рівномірно і прямолінійно по спокійному морю. Для спостерігача, що знаходиться в каюті, коливання маятника, падіння тіл і інші механічні процеси протікатимуть точно так, як і на нерухомому кораблі. Тому, спостерігаючи ці процеси, неможливо встановити ні величину швидкості, ні навіть сам факт руху корабля. Щоб судити про рух корабля щодо якої-небудь іншої системи відліку (наприклад, поверхні води), необхідно вести нагляди і за цією системою (бачити, як віддаляються предмети, що лежать на воді, і т. п.).
До початку XX сторіччя з'ясувалося, що не тільки механічні, але і теплові, електричні, оптичні і всі інші процеси і явища природи протікають абсолютно однаково у всіх інерціальних системах відліку. На цій підставі Ейнштейн в 1905р. сформулював узагальнений принцип відносності , названийзгодом принципом відносності Ейнштейна:
у всіх і нерц і альн и х системах відліку всі фізичні процеси протікають абсолютно однаково (за однакових умов).
Цей принцип разом з положенням про незалежність швидкості розповсюдження світла у вакуумі від руху джерела світла ліг в основу спеціальної теорії відносності, розробленої Ейнштейном.
Закони Ньютона і інші розглянуті нами закони динаміки виконуються тільки в і нерц і альн и х системах відліку. В неінерціальних системах відліку ці закони, взагалі кажучи, вже несправедливі. Розглянемо простий приклад, що пояснює останнє твердження.
На абсолютно гладкій платформі, що рухається рівномірно і прямолінійно, лежить куля масою т ;на цій же платформі знаходиться спостерігач. Інший спостерігач стоїть на Землі недалеко від місця, мимо якого незабаром повинна пройти платформа. Очевидно, що обидва спостерігачі пов'язані зараз з інерціальними системами відліку.
Нехай тепер у момент проходження мимо спостерігача пов'язаного із Землею, платформа почне рухатися з прискоренням а , тобто зробиться не і нерц і ально ю системою відліку. При цьому куля, що раніше покоїлася щодо платформи, прийде (щодо неї ж) в рух з прискоренням а, протилежним по напряму і рівним по величині прискоренню, придбаному платформою. З'ясуємо, як виглядає поведінка кулі з точок зору кожного з наших спостерігачів.
Для спостерігача, пов'язаного з інерціальною системою відліку – Землею, куля продовжує рухатися рівномірно і прямолінійно в повній відповідності із законом інерції (оскільки на нього не діють ніякі сили, окрім сили тяжіння, врівноважуваною реакцією опори).
Спостерігачу, пов'язаному з неінерціальною системою відліку – платформою, представляється інша картина: куля приходить в рух і придбаває прискорення – а без дії сили (оскільки спостерігач не знаходить дії на кулю яких-небудь інших тіл, що повідомляють кулю прискорення). Це явно суперечить закону інерції. Не виконується і другий закон Ньютона: застосувавши його, спостерігач одержав би, що 0 (сила) = – ma , а це неможливо, оскільки ні m , ні а не рівні нулю.
Можна, проте, зробити закони динаміки застосовними і для опису рухів в не і нерц і альн и х системах відліку, якщо ввести в розгляд сили особливого роду — сили інерції. Тоді в нашому прикладі спостерігач, пов'язаний з платформою, може вважати, що куля прийшла в рух під дією сили інерції
![]() |
Введення сили інерції дозволяє записувати другий закон Ньютона (і його слідства) в звичайній формі ; тільки під діючою силою треба тепер розуміти результуючу « звичайних» сил (F) і сил інерції (Fі ):
![]() |
де m — маса тіла, а — його прискорення.
Сили інерції ми назвали силами «особливого роду», по-перше, тому, що вони діють тільки в неінерціальних системах відліку, і, по-друге, тому, що для них на відміну від «звичайних» сил неможливо вказати, дією яких саме інших тіл (на дане тіло) вони обумовлені. Очевидно, з цієї причини до сил інерції неможливо застосувати третій закон Ньютона (і його слідства); це є третьою особливістю сил інерції.
Неможливість вказати окремі тіла, дією яких (на дане тіло) обумовлені сили інерції, не означає, звичайно, що виникнення цих сил взагалі не пов'язано з дією яких-небудь матеріальних тел. Є серйозні підстави припускати, що сили інерції обумовлені дією всієї сукупності тіл Всесвіту (масою Всесвіту в цілому).
Річ у тому, що між силами інерції і силами тяжіння існує дуже велика схожість: і ті і інші пропорційні масі тіла, на яке вони діють, і тому прискорення, повідомляється тіло кожної. З цих сил, не залежить від маси тіла. За певних умов ці сили взагалі неможливо розрізнити. Хай, наприклад, десь в космічному просторі рухається з прискоренням (обумовленим роботою двигунів) космічний корабель. Космонавт, що знаходиться в ньому, при цьому випробовуватиме силу, що притискує його до «підлоги» (задньої по відношенню до напряму руху стінці) корабля. Ця сила створить точно такий же ефект і викличе у космонавта такі ж відчуття, які викликала б відповідна сила тяжіння.
Якщо космонавт вважає, що його корабель рухається з прискоренням а щодо Всесвіту, то він назве діючу на нього силу силою інерції. Якщо ж космонавт вважатиме свій корабель нерухомим, а Всесвіт — що мчить мимо корабля з таким же прискоренням а , то він назве цю силу силою тяжіння. І обидві точки зору будуть абсолютно рівноправними. Ніякий експеримент, виконаний усередині корабля, не зможе довести правильність однієї і помилковість іншої точки зору.
З розглянутого і інших аналогічних прикладів витікає, що прискорений рух системи відліку еквівалентний (по своїй дії на тіла) виникненню відповідних сил тяжіння. Це положення одержало назву принципу еквівалентності сил тяжіння і інерції (принципу еквівалентності Ейнштейна); даний принцип ліг в основу загальної теорії відносності.
Сили інерції виникають не тільки в тих, що прямолінійно рухаються, але і в неінерціальних системах відліку, що обертаються. Хай, наприклад, на горизонтальній платформі, що може обертатися навкруги вертикальної осі, лежить тіло масою m, пов'язане з центром обертання Про гумовим шнуром (мал. 5). Якщо тепер платформа почне обертатися з кутовою швидкістю ω (і, отже, перетвориться на неинерциальную систему), то завдяки тертю тіло теж буде залучено в обертання. Разом з тим воно переміщатиметься в радіальному напрямі від центру платформи до тих пір, поки зростаюча сила пружності шнура, що розтягується, не зупинить це переміщення. Тоді тіло обертатиметься на відстані r від центру О .
З погляду спостерігача, пов'язаного з платформою, переміщення кулі щодо платформи обумовлено деякою силою Fц.і . . Це є сила інерції, оскільки вона не викликана дією на кулю інших певних тіл; її називають відцентровою силою інерції. Очевидно, що відцентрова сила інерції рівна по величині і протилежна по напряму силі пружності розтягнутого шнура, що грає роль доцентрової сили, яка діє на тіло, що обертається по відношенню до инерциальной системи. Тому
![]() |
отже, відцентрова сила інерції пропорційна відстані тіла від осі обертання.
Підкреслимо, що відцентрову силу інерції не слід змішувати з «звичайною» відцентровою силою. Це сили різної природи, прикладені до різних об'єктів: відцентрова сила інерції прикладена до тіла, а відцентрова сила — до зв'язку.
На закінчення відзначимо, що з позиції принципу еквівалентності сил тяжіння і Інерції просте пояснення одержує дію всіх відцентрових механізмів: насосів, сепараторів і т.п.
Будь-який відцентровий механізм можна розглядати як обертається неинерциальную систему, що викликає появу поля тяжіння радіальної конфігурації, яке в обмеженій області значно перевершує поле земного тяжіння. В цьому полі більш щільні частинки середовища, що обертається, або частинки, слабко пов'язані з нею, відходять до її периферії (як би йдуть «на дно»).