Реферат: Система уравнений Максвелла в сплошной среде. Граничные условия
Ещё одно граничное условие можно получить, используя уравнение непрерывности (0) и уравнение (4), из которых следует:
Так как граничное условие (19) является следствием уравнения (2), то по аналогии находим:
(23)
Если же на поверхности раздела нет зарядов, поверхностная плотность которых зависит от времени, то из (18) и (23) следует непрерывность нормальных составляющих плотности тока:
.
Итак, граничные условия на поверхности раздела двух сред имеют вид:
;
(24)
;
где - нормаль к границе раздела, направленная из среды 2 в среду 1, и должны выполняться в любой момент времени и в каждой точке поверхности раздела.
3. Уравнения Максвелла в системе уравнений магнитостатики и электростатики
Так как на практике почти всегда приходится решать уравнения Максвелла (1) – (4) в кусочно-непрерывных средах, то граничные условия (24) следует рассматривать как неотъёмлемую часть уравнений Максвелла (1) – (4).
В случае стационарных электрических и магнитных полей ( и) система уравнений Максвелла (1) – (4) распадается на систему
уравнений электростатики :
, , (25)
и уравнений магнитостатики :
, , , (26)
а граничные условия остаются те же.
4. Пример
В качестве примера решения электростатических задач можно вычислить электрическое поле, создаваемое диэлектрическим шаром радиуса R, находящемся в однородном электрическом поле . Уравнения электростатики в диэлектрике (25) при =0 имеют вид:
, , (27)
Из этих уравнений следует, сто потенциал электростатического поля удовлетворяет уравнению
(28)
причём = -, -. В однородном диэлектрике =const , поэтому уравнение (27) переходит в обычное уравнение Лапласа =0.
Граничное условия (24), выражающее непрерывность вектора индукции, записывается следующим образом:
при r =R (29)
Здесь – решение уравнения вне сферы, а – внутри сферы. Вместо граничного условия непрерывности тангенциальных составляющих электрического поля можно использовать эквивалентное ему условие непрерывности потенциала
= (30)
Это условие можно получить, рассматривая интеграл по контуру, изображенному на рис. 2. Воспользовавшись теоремой Стокса и уравнением , находим
Так как интеграл по любому замкнутому контуру равен нулю, то это значит, что функция непрерывна, откуда и следует условие (30). Из (30) очевидно так же, что
где элемент направлен касательно к границе раздела. Из этого равенства следует, что тангенциальные компоненты вектора также непрерывны.
Для решения поставленной задачи используем сферическую систему координат, полярная ось которой (ось z ) совпадает с направлением напряжённости однородного внешнего электрического поля .
Поскольку на достаточно большом удалении от диэлектрического шара электрическое поле не искажается наличием этого шара, то потенциал должен удовлетворять условию
при .
Из соображений симметрии ясно, что потенциал не должен зависеть от азимутального угла, поэтому решение уравнения Лапласа запишем в виде разложения по полиномам Лежандра :
,
.