Реферат: Системи координат декартова полярна циліндрична сферична Довжина і координати вектора Век
Системи координат (декартова, полярна, циліндрична, сферична). Довжина і координати вектора. Векторний простір. Лінійна залежність і незалежність системи векторів.
План
- Базис.
- Лінійна залежність і незалежність векторів.
- Декартова система координат.
- Довжина і координати вектора.
- Поділ відрізка в заданому відношенні.
- Полярна система координат.
- Циліндрична система координат.
- Сферична система координат.
- Заміна системи координат.
1 . Базис
Довільна впорядкована (взята в певному порядку) трійка некомпланарних векторів називається базисом простору.
Базисом на площині називаються два неколінеарних вектори, взяті в певному порядку.
Базисом на прямій називається довільний ненульовий вектор на цій прямій.
Ніякі два вектори базису в просторі неколінеарні, оскільки в противному випадку всі три були б компланарні. Так само вектори базису на площині ненульові (якщо хоча б один із них був нульовий, то вони були б колінеарні).
Якщо деякий вектор представити як лінійну комбінацію інших векторів, то говорять, що він розкладений за цими векторами.
Означення. Якщо базис в просторі і то числа називаються координатами (компонентами ) вектора в даному базисі. Аналогічно визначаються координати вектора в базисі на площині (двома числами) і на прямій (одним числом). Координати вектора будемо позначати так:
Із шкільного курсу математики відомі такі твердження:
Кожний вектор, що паралельний деякій прямій, може бути розкладений за базисом на цій прямій.
Кожний вектор, що паралельний деякій площині, може бути розкладений за базисом на цій площині.
Кожний вектор може бути розкладений за базисом в просторі.
Координати вектора в кожному випадку визначаються однозначно.
Очевидно також, що рівні вектори мають однакові координати.
При множенні вектора на число його координати множаться на це число.
Дійсно, якщо то
При додаванні векторів додаються їх координати.
Якщо то
2 . Лінійна залежність векторів
Лінійна комбінація декількох векторів називається тривіальною , якщо всі її коефіцієнти дорівнюють нулю. Лінійна комбінація не тривіальна , якщо хоча б один із її коефіцієнтів відмінний від нуля.
Означення. Вектори називаються лінійно незалежними , якщо тільки тривіальна комбінація векторів дорівнює нулю. Якщо вектори лінійно незалежні, то із рівності випливає
В противному випадку вектори будуть лінійно залежними . Це значить, що існує нетривіальна лінійна комбінація цих векторів, що дорівнює нулю. Іншими словами, існують такі коефіцієнти , що і
Якщо серед векторів є нульовий, то ці вектори лінійно залежні. Взявши при нульовому вектору коефіцієнт 1, а при всіх інших – нулі, одержимо нетривіальну лінійну комбінацію, що дорівнює нулю.
Теорема. Система векторів лінійно залежна тоді і тільки тоді, коли один із них розкладається в лінійну комбінацію інших.
Д о в е д е н н я. Нехай лінійно залежні, тобто існують такі коефіцієнти , що і хоча б один із коефіцієнтів, наприклад,
--> ЧИТАТЬ ПОЛНОСТЬЮ <--