Реферат: Системный анализ и проблемы принятия решений
Пример 1. Рассматривается работа промышленного предприятия под углом зрения его рентабельности, причем проводится ряд мер с целью повышения этой рентабельности Показатель эффективности — прибыль (или средняя прибыль), приносимая предприятием за хозяйственный год
Пример 2 Группа истребителей поднимается в воздух для перехвата одиночного самолета противника Цель операции — сбить самолет. Показатель эффективности — вероятность поражения (сбития) самолета
Пример 3. Ремонтная мастерская занимается обслуживанием машин; ее рентабельность определяется количеством машин, обслуженных в течение дня. Показатель эффективности — среднее число машин, обслуженных за день («среднее» потому, что фактическое число случайно)
Пример 4. Группа радиолокационных станций в определенном районе ведет наблюдение за воздушным пространством. Задача группы — обнаружить любой самолет, если он появится в районе Показатель эффективности — вероятность обнаружения любого самолета, появившегося в районе.
Пример 5. Предпринимается ряд мер по повышению надежности электронной цифровой вычислительной машины (ЭЦВМ). Цель операции — уменьшить частоту появления неисправностей («сбоев») ЭЦВМ, или, что равносильно, увеличить средний промежуток времени между сбоями («наработку на отказ»). Показатель эффективности — среднее время безотказной работы ЭЦВМ (или среднее относительное время исправной работы).
Пример 6. Проводится борьба за экономию средств при производстве определенного вида товаров. Показатель эффективности—количество (или среднее количество) сэкономленных средств.
Во всех рассмотренных примерах показатель эффективности, каков бы он ни был, требовалось обратить в максимум («чем больше, тем лучше»). Вообще, это не обязательно: в исследовании операций часто пользуются показателями, которые требуется обратить не в максимум, а в минимум («чем меньше, тем лучше»). Например, в примере 4 можно было бы в качестве показателя эффективности взять «вероятность тоге, что появившийся самолет не будет обнаружен» — этот показатель желательно сделать как можно меньше. В примере 5 за показатель эффективности можно было бы принять «среднее число сбоев за сутки», которое желательно минимизировать. Если оценивается какая-то система, обеспечивающая наведение снаряда на цель, то в качестве показателя эффективности можно выбрать среднее значение «промаха» снаряда (расстояния от траектории до центра цели), которое желательно сделать как можно меньше. Наряд средств, выделяемых на выполнение какой-либо задачи, тоже желательно сделать минимальным, равно как и стоимость предпринимаемой системы мероприятий. Таким образом, во многих задачах исследования операций разумное решение должно обеспечивать не максимум, а минимум некоторого показателя.
Очевидно, что случай, когда показатель эффективностиW надо обратить в минимум, легко сводится к задаче максимизации (для этого достаточно, например, изменить знак величины W). Поэтому в дальнейшем, рассматривая в общем виде задачу исследования операций, мы будем для простоты говорить только о случае, когда W требуется обратить в м а к с и м у м. Что касается практических конкретных задач, то мы будем пользоваться как показателями эффективности, которые требуется максимизировать, так и теми, которые требуется минимизировать.
2. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ОПЕРАЦИИ
Для применения количественных методов исследования в любой области всегда требуется построить ту или другую математическую модель явления. Me составляет исключения и исследование операций. При построении математической модели явление (в нашем случае — операция) каким-то образом упрощается, схематизируется; из бесчисленного множества факторов, влияющих на явление, выделяется сравнительно небольшое количество важнейших, и полученная схема описывается с помощью того или другого математического аппарата. В результате устанавливаются количественные связи между условиями операции, параметрами решения и исходом операции — показателем эффективности (или показателями, если их в данной задаче несколько).
Чем удачнее подобрана математическая модель, тем лучше она отражает характерные черты явления, тем успешнее будет исследование и полезнее — вытекающие из него рекомендации.
Общих способов построения математических моделей не существует. В каждом конкретном случае модель строится, исходя из целевой направленности операции и задачи научного исследования, с учетом требуемой точности решения, а также точности, с какой могут быть известны исходные данные.
Требования к модели противоречивы. С одной стороны, она должна быть достаточно полной, т. е. в ней должны быть учтены все важные факторы, от которых существенно зависит исход операции. С другой стороны, модель должна быть достаточно простой для того, чтобы можно было установить обозримые (желательно— аналитические) зависимости между входящими в нее параметрами. Модель не должна быть «засорена» множеством мелких, второстепенных факторов — их учет усложняет математический анализ и делает результаты исследования трудно обозримыми.
Одним словом, искусство составлять математические модели есть именно искусство, и опыт в этом деле приобретается постепенно. Две опасности всегда подстерегают составителя модели: первая - утонуть в подробностях («из-за деревьев не увидеть леса»); вторая - слишком огрубить явление («выплеснуть из ванны вместе с водой и ребенка»). В сложных случаях, когда построение модели вызывает наибольшее сомнение, полезным оказывается своеобразный «спор моделей», когда одно и то же явление исследуется на нескольких моделях. Если научные выводы и рекомендации от модели к модели меняются мало, это — серьезный аргумент в пользу объективности исследования. Характерным для сложных задач исследования операций является также повторное обращение к модели: после того, как первый цикл исследований выполнен, возвращаются снова к модели и вносят в нее необходимые коррективы.
Построение математической модели — наиболее важная и ответственная часть исследования, требующая глубоких знаний не только и не столько в математике, сколько в существе моделируемых явлений. Однако раз созданная удачная модель может найти применение и далеко за пределами того круга явлений, для которого она первоначально создавалась. Так, например, математические модели массового обслуживания нашли широкое применение в целом ряде областей, далеких, с первого взгляда, от массового обслуживания (надежность технических устройств, организация автоматизированного производства, задачи ПВО и др.). Математические модели, первоначально предназначенные для описания динамики развития биологических популяций, находят широкое применение при описании боевых действий и наоборот — боевые модели с успехом применяются в биологии.
Математические модели, применяемые в настоящее время в задачах исследования операций, можно грубо подразделить на два класса:
а н а л и т и ч е с к и е и с т а т и с т и ч е с к и е.
Для первых характерно установление формульных, аналитических зависимостей между параметрами задачи, записанных в любом виде: алгебраические уравнения, обыкновенные дифференциальные уравнения, уравнения с частными производными и т. д. Чтобы такое аналитическое описание операции было возможно, как правило, нужно принять те или иные допущения или упрощения. С помощью аналитических моделей удается с удовлетворительной точностью описать только сравнительно простые операции, где число взаимодействующих элементов не слишком велико. В операциях же большого масштаба, сложных, в которых переплетается действие огромного количества факторов, в том числе и случайных, на первый план выходит метод статистического моделирования. Он состоит в том, что процесс развития операции как бы «копируется» на вычислительной машине, со всеми сопровождающими его случайностями. Всякий раз, когда в ход операции вмешивается какой-либо случайный фактор, его влияние учитывается посредством «розыгрыша», напоминающего бросание жребия. В результате многократного повторения такой процедуры удается получить интересующие нас характеристики исхода операции с любой степенью точности.
Статистические модели имеют перед аналитическими то преимущество, что они позволяют учесть большее число факторов и не требуют грубых упрощений и допущений. Зато результаты статистического моделирования труднее поддаются анализу и осмыслению. Более грубые аналитические модели описывают явление лишь приближенно, зато результаты более наглядны и отчетливее отражают присущие явлению основные закономерности. Наилучшие результаты получаются при совместном применении аналитических и статистических моделей:
простая аналитическая модель позволяет вчерне разобраться в основных закономерностях явления, наметить главные его контуры, а любое дальнейшее уточнение может быть получено статистическим моделированием.
3. ОБЩАЯ ПОСТАНОВКА ЗАДАЧИ
ИССЛЕДОВАНИЯ ОПЕРАЦИИ. ДЕТЕРМИНИРОВАННЫЙ СЛУЧАЙ
Рассмотрим задачу исследования операций в общей постановке, безотносительно к виду и цели операции.
Пусть имеется некоторая операция 0 , т. е. управляемое мероприятие, на исход которого мы можем в какой-то мере влиять, выбирая тем или другим способом зависящие от нас параметры. Эффективность операции характеризуется каким-то численным критерием или показателемW, который требуется обратить в максимум (случай, когда его требуется обратить в минимум, сводится к предыдущему и отдельно не рассматривается).
Предположим, что тем или иным способом математическая модель операции построена; она позволяет вычислить показатель эффективности W при любом принятом решении, для любой совокупности условий, в которых выполняется операция.
Рассмотрим сначала наиболее простой случай: все факторы, от которых зависит успех операции, делятся на две группы:
— заданные, заранее известные факторы (условия проведения операции) а1, а2 ..., на которые мы влиять не можем;
— зависящие от нас факторы (элементы решения) х1, х2, ..., которые мы, в известных пределах, можем выбирать по своему усмотрению.
Этот случай, в котором факторы, влияющие на исход операции, либо заранее известны, либо зависят от нас, мы будем называть детерминированным.
Заметим, что под «заданными условиями» операцииа1,а2 ... могут пониматься не только обычные числа, но и функции, в частности— ограничения, наложенные на элементы решения. Равным образом, элементы решения х1, х2, ... также могут быть не только числами, но и функциями.
Показатель эффективности W зависит от обеих групп факторов:
как от заданных условий, так и от элементов решения. Запишем эту зависимость в виде общей символической формулы:
W=W(a1, а2,... х1, х2 ,...). (3.1)