Реферат: Скалярная проекция гиперкомплексных чисел
И для того, чтобы получить проекцию, следует взять действительную часть вектора B’ и провести соответствующую нормировку, поскольку указанным поворотом мы исказили величину модуля вектора B.
К числу весьма важных свойств скалярного произведения относится:
Поэтому, стремясь найти для гиперкомплексных чисел полную аналогию скалярному произведению, мы не будем использовать нормировок. В этом случае определенное выше правило выглядит как:
И для случая A = B переходит в
Перечислим еще раз свойства скалярного произведения в классическом варианте и найдем соответствия им в случае гиперкомплексных чисел:
1) , причем (x,x) только при x = 0
2) (x,y) = (y,x)
3) (x,ky) = k(x,y) где k - любое действительное число
4) (x,y+z)=(x,y)+(x,z)
Для первого свойства вышеприведенное правило построения проекции не подходит, поскольку
Поскольку даже для тех алгебр, для которых может быть отрицательным числом, число всегда положительно, но исключение составляет условие
(x,x) = 0 только при x = 0
Тут следует сделать оговорку, что в гиперкомплексных алгебрах случай идеалов вовсе не является исключением, поэтому для скалярной проекции гиперкомплексных чисел вполне возможно снять это условие и разрешить
при
Рассмотрим второе свойство скалярного произведения
(x,y) = (y,x)
В случае построения аналогии в нашем случае следует доказать, что
Для этого докажем промежуточные равенства:
a)
b)
Для доказательства равенства a) рассмотрим коэффициенты таблицы произведения мнимых единиц в алгебрах Кэли - Диксона: