Реферат: Скалярная проекция гиперкомплексных чисел

при

Таким образом, в произведении в действительной части будут присутствовать только четные степени при , а нечетных не будет.

Обозначив через элемент алгебры, алгебраически сопряженный элементу X, а через - сопряжение путем смены знаков у всех коэффициентов при мнимых единицах, получим:

Сопряжение еще можно назвать фазовым сопряжением, поскольку сопрягается фаза числа. Поскольку выражение для определено в виде полиномиального ряда, то в будут входить только четные функции от мнимых компонентов фазы числа X. Поскольку функции четные, например ch или cos, то действительная часть при алгебраическом сопряжении не меняется:

Для доказательства промежуточного равенства b) рассмотрим также таблицу произведений мнимых единиц алгебр Кэли - Диксона:

Поскольку раскрыв произведение ab мы получим гиперкомплексное число, рассмотрим образование его действительной части. В нее входят:

- произведение действительных частей a и b.

- произведение одинаковых мнимых компонентов a и b.

Поскольку для алгебр Кэли - Диксона нельзя получить действительного числа из произведений

при

а две вышеприведенные составляющие не зависят от порядка сомножителей a и b, то, следовательно,

Для доказательства соответствия предложенной формы скалярной проекции второму свойству скалярного произведения просто преобразуем выражение:

Таким образом, если скалярному произведению (x,y) сопоставлять , то правило коммутативности скалярного произведения выполняется.

Соответствие предлагаемой формы скалярной проекции третьему свойству скалярного произведения проверяется непосредственно: если k - действительное число, то

, поэтому

Для проверки соответствия четвертому свойству используем второе и проверим:

(x,y + z) = (y + z,x) = (y,x) + (z,x)

Распишем скалярную проекцию:

К-во Просмотров: 742
Бесплатно скачать Реферат: Скалярная проекция гиперкомплексных чисел