Реферат: Сплайны, финитные функции
Введение
Функции, подобные тем, что сейчас называют сплайнами были известны математикам давно, начиная как минимум с Эйлера, но их интенсивное изучение началось, фактически, только в середине XX века. В 1946 году Исаак Шёнберг впервые употребил этот термин в качестве обозначения класса полиномиальных сплайнов. До 1960 годов сплайны были в основном инструментом теоретических исследований, они часто появлялись в качестве решений различных экстремальных и вариационных задач, особенно в теории приближений.
После 1960 года с развитием вычислительной техники началось использование сплайнов в компьютерной графике и моделировании, что продолжается по сей день.
1. Сплайны
Под сплайном (от англ. spline – планка, рейка) обычно понимают кусочно-заданную функцию, совпадающую с функциями более простой природы на каждом элементе разбиения своей области определения.
Классический сплайн одной переменной строится так: область определения разбивается на конечное число отрезков, на каждом из которых сплайн совпадает с некоторым алгебраическим полиномом. Максимальная степень из использованных полиномов называется степенью сплайна. Разность между степенью сплайна и получившейся гладкостью называется дефектом сплайна. Например, непрерывная ломаная есть сплайн степени 1 и дефекта 1.
Сплайны имеют многочисленные применения как в математической теории, так и в разнообразных вычислительных приложениях. В частности, сплайны двух переменных интенсивно используются для задания поверхностей в различных системах компьютерного моделирования.
1.1 Кривые Безье
Кривые Безье́ или Кривые Бернштейна-Безье были разработаны в 60-х годах XX века независимо друг от друга Пьером Безье и Полем де Кастельжо.
Впервые кривые были представлены широкой публике в 1962 году французским инженером Пьером Безье, который, разработав их независимо от де Кастельжо, использовал их для компьютерного проектирования автомобильных кузовов. Кривые были названы именем Безье, а именем де Кастельжо назван разработанный им рекурсивный способ определения кривых (алгоритм де Кастельжо).
Впоследствии это открытие стало одним из важнейших инструментов систем автоматизированного проектирования и программ компьютерной графики.
Определение
Кривая Безье – параметрическая кривая, задаваемая выражением:
(1.1)
где – функция компонент векторов опорных вершин, а – базисные функции кривой Безье, называемые также полиномами Бернштейна.
(1.2)
, (1.3)
где n – степень полинома, i – порядковый номер опорной вершины
1.2 Виды кривых Безье:
1. Линейные кривые
При n = 1 кривая представляет собой отрезок прямой линии, опорные точки P0 и P1 определяют его начало и конец. Кривая задаётся уравнением:
(1.4)
2. Квадратичные кривые
Квадратичная кривая Безье (n = 2) задаётся 3-мя опорными точками: P0, P1 и P2:
(1.5)
Квадратичные кривые Безье в составе сплайнов используются для описания формы символов в шрифтах TrueType и в SWF файлах.
3. Кубические кривые
В параметрической форме кубическая кривая Безье (n = 3) описывается следующим уравнением:
(1.6)
--> ЧИТАТЬ ПОЛНОСТЬЮ <--