Реферат: Статистические методы оценки прочности пластмасс
Рраз = 1 – Рнер ; Рнер = 1 – Рраз
При вероятности неразрушения Рнер, равной 0,9; 0,99; 0,999; 0,9999, соответственно Н равно 1; 2; 3; 4.
3. Статистическая оценка прочности пластмасс по нагрузкам
Тимофеев Е.И. показал, что из-за недостаточной однородности и стабильности механических свойств пластмасс расчет по средним значениям нагрузок следует вести с учетом вероятности снижения прочности вследствие релаксации и неоднородности.
Изделие считается прочным, если действующая нагрузка Q меньше разрушающей R:
R– Q > 0
Вероятность такого события определяет надежность изделия:
α = Вер [(R – Q) > 0]
Обозначим разность нагрузок через Х:
Х= R – Q
Тогда, с учетом того, что Х подчиняется нормальному закону распределения с плотностью Р(Х), среднее значение Х равно:
Х0 = R0 – Q0
Стандартное отклонение:
Sx = √ SR 2 + SQ 2
Надежность:
2 2
α = Вер (Х > 0) = P(X)·dX = 1/(S·√2π)·∫e-1/2·(( x - x ср) / S x) ·dx
С учетом нормированной функции Лапласа:
α = Ф(У),
где У = X0 / Sx (У берется из таблиц в зависимости от заданной вероятности).
После подстановки уравнений и деления числителя и знаменателя на Q0 получим:
У = (R0 /Q0 – 1) / √SR 2 / Q0 2 + SQ 2 / Q0 2
Введем обозначения:
n0 = R0 / Q0 – средний наиболее вероятный запас прочности;
νR = SR / R0 ; νQ = SQ / Q0 – коэффициенты вариации разрушающей и действующей нагрузок.
Тогда:
У = (n0 –1)/√ n0 2 ·νR 2 + νQ 2
Для трубы при r >> h, где r – радиус, а h– толщина стенки, принимают:
νR = √ νв 2 + νh 2
Пользуясь специальными таблицами для Ф(У), после вычисления функции У можно определить запас прочности по средним значениям нагрузок или надежность по выбранному среднему коэффициенту запаса прочности. Определение функции У позволяет также исследовать влияние на надежность величины статистического разброса разрушающих и действующих нагрузок.
Статистические методы позволяют дать оценку влияния на надежность пластмассовых изделий температур, агрессивных сред, усталости, климатических факторов и т.д.