Реферат: Свойства алюминия
Алюминий-самый распространненый металл в земной коре. Его содержание оценивают в 7.45 % (больше, чем железа, которого только 4.2 %). Алюминий как элемент открыт недавно-в 1825 г., когда были получены первые небольшие комочки этого металла. Начало его промышленного освоения относится к концу прошлого столетия. Толчком к этому послужила разработка в 1886 г. способа его получения путем электролиза глинозема, растворенного в криолите. Принцип способа лежит в основе современного промышленного извлечения алюминия из глинозема во всех странах мира.
По внешнему виду алюминий представляет собой блестящий серебристый белый металл. На воздухе он быстро окисляется, покрываясь тонкой белой
матовой пленкой Al O . Эта пленка обладает высокими защитными свойствами, поэтому, будучи покрытым такой пленкой, алюминий является коррозионностойким.
Алюминий достаточно легко разрушается растворами едких щелочей, соляной и серной кислот. В концетрированной азотной кислоте и органических кислотах он обладает высокой стойкостью.
Наиболее характерными физическими свойствами алюминия является его малая относительная плотность, равная 2.7, а также сравнительно высокие тепло- и электропроводность. При 0 C удельная электропроводность алюминия, т.е. электропроводность алюминиевой проволоки сечением 1 мм и длиной 1 м равна 37 1 ом.
Коррозионная стойкость и особенно электропроводность алюминия тем выше, чем он чище, чем меньше в нем примесей.
Температура плавления алюминия невысокая, она равна приблизительно 660 C. Однако скрытая теплота плавления его очень большая-около 100 кал г, поэтому для расплавления алюминия требуется большой расход тепла, чем для расплавления такого же количества, например, тугоплавкой меди, у которой температура плавления 1083 C, скрытая теплота плавления 43 кал г.
Для механических свойств алюминия характерна большая пластичность и малая прочность. Прокатанный и отожженный алюминий имеет =10 кГ мм, а твердость НВ25, =80% и =35%.
Кристаллическая решетка алюминия представляет собой гранецентрированный куб, имеющий при 20 C параметр (размер стороны) 4.04 . Аллотропических превращений алюминий не имеет.
В природе аллюминий находится в виде алюминиевых руд: бокситов, нефелинов, алунитов и каолинов. Важнейшей рудой, на которой базируется большая часть мировой алюминиевой промышленности, являются бокситы.
Получение алюминия из руд состоит из двух последовательно проводимых этапов-сначала производят глинозем (Al O ), а затем из него получают алюминий.
Известные в настоящее время методы получения глинозема можно разбить на три группы: щелочные, кислотные и электротермические. Наиболее широкое применение получили щелочные методы.
В одних разновидностях щелочных методов боксит, обезвоженный при 1000 C, измельчают в шаровых мельницах, смешивают в определенных пропорциях с мелом и содой и спекают для получения растворимого в воде твердого алюмината натрия по реакции
Al O + Na CO = Al O Na O + CO .
Спекшуюся массу измельчают и выщелачивают водой, алюминат натрия при этом переходит в раствор.
В других разновидностях щелочного метода глинозем, содержащийся в боксите, связывают в алюминат натрия путем непосредственной обработки руды щелочами. При этом сразу получается раствор алюмината в воде.
В обоих случаях образование водного раствора алюмината натрия приводит к отделению его от нерастворимых компонентов руды, представляющих собой в основном окиси и гидроокиси кремния, железа и титана. Отделение раствора от нерастворимого осадка, называемого красным шламом, осуществляют в отстойниках.
В полученный раствор при 125 C и давлении 5 ам добавляют известь, что приводит к обескремниванию-CaSiO уходит в осадок, образуя белый шлам. Очищенный от кремния раствор после отделения его от белого шлама обрабатывают углекислым газом при 60-80 C, в результате чего в осадок выпадает кристаллический гидрат окиси алюминия:
Al O Na O + 3H O + CO = 2Al(OH) + Na CO .
Его промывают, просушивают и прокаливают. Прокаливание приводит к образованию глинозема:
2Al(OH) = Al O + 3H O .
Описанный способ обеспечивает довольно полное извлечение глинозема из боксита-около 80%.
Получение металлического алюминия из глинозема заключается в его электролитическом разложении на составные части-на алюминий и кислород. Электролитом в этом процессе является раствор глинозема в криолите (AlF 3NaF). Криолит, обладая способностью растворять глинозем, одновременно снижает его температуру плавления. Глинозем плавится при температуре около 2000 C, а температура плавления раствора, состоящего, например, из 85 % криолита и 15 % глинозема, равна 935 C.
Схема ээлектролиза глинозема достаточно проста, но технологически этот процесс сложный и требует больших затрат электроэнергии.
В поду ванны с хорошей теплоизоляцией 1 и угольной набивкой 2 заложены катодные шины 3, соединенные с отрицательным полюсом источника электрического тока. К анодной шине 4 присоединены электроды 5. Перед началом электролиза на дно ванны насыпают тонкий слой кокса, электроды опускают до соприкосновения с ним и включают ток. Когда угольная набивка накалится, постепенно вводят криолит. При толщине слоя расплавленного криолита, равной 200-300 мм, загружают глинозем из расчета 15% к количеству криолита. Процесс происходит при 950-1000 C.
Под действием электрического тока глинозем разлагается алюминий и кислород. Жидкий алюминий 6 скапливается на угольной подине (дно угольной ванны), являющейся катодом, а кислород соединяется с углеродом анодов, постепенно сжигая их. Криолит расходуется незначительно. Глинозем периодически добавляют, электроды для компенсации сгоревшей части постепенно опускают вниз, а накопившийся жидкий алюминий через определенные промежутки времени выпускают в ковш 8.
При электролизе на 1 т алюминия расходуется около 2 т глинозема,
0.6 т угольных электродов, служащих анодами, 0.1 т криолита и от
17000 до 18000 квт ч электроэнергии.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--