Реферат: Свойства алюминия
Для производства первичного алюминия предназначен глинозем марок ГА85, ГА8, ГА6 и ГА5. Буквенная часть марок указывает на область применения глинозема, а цифры-на степень чистоты получаемого алюминия: это сотые и десятые доли процента сверх 99 %. Например, марка ГА85- глинозем для получения алюминия со степенью чистоты 99.85 %, а марка ГА5-то же, но со степенью чистоты 99.5 %.
Для производства белого электрокорунда применяют глинозем марки
ГЭ5, высокоглиноземистых огнеупоров-ГО, электроизоляционных изделий-
ГК и для электровакуумной промышленности и специальных видов радиокерамики-ГЭВ.
В глиноземах всех назначений нормируются потери при прокаливании
(в разных марках от 0.4 до 1.2 %), содержание кремнезема (от 0.03 до
0.5 %), окиси железа (от 0.035 до 0.1 %) и окиси щелочных металлов
(от 0.1 до 0.6 %).
Влага, удаляемая при 120 C, не нормируется.
Как уже сказано, по физическому состоянию глинозем имеет вид порошка. Особенно строгие требования по гранулометрическому составу предьявляют к глинозему марки ГЭВ, в котором частицы должны иметь округлую форму и их размер не должен превышать 3 мкм.
Глинозем марок ГК и ГЭВ при поставке обязательно упаковывают в многослойные бумажные мешки или в сухие мешки из плотной ткани. Перевозят их в закрытых железнодорожных вагонах и трюмах. Глинозем остальных шести марок можно упаковывать в мешки, но чаще его перевозят без тары навалом в специальных (цементовозах, цистернах и т.д.).
Прочность алюминия незначительна, поэтому для изготовления любых изделий,предназначенных к восприятию внешних сил, применяют не чистый алюминий, а его сплавы, которых в настоящее время разработано достаточно много марок.
Введение различных легирующих элементов в алюминий существенно изменяет его свойства, а иногда придает ему новые специфические свойства. При различном легировании повышаются прочность, твердость, приобретается жаропрочность и другие свойства. При этом происходят и нежелательные изменения: неизбежно снижается электропроводность, во многих случаях ухудшается коррозионная стойкость, почти всегда повышается относительная плотность. Исключение составляет легирование марганцем, который не только не снижает коррозионную стойкость, но даже несколько повышает ее, и магнием, который тоже повышает коррозионную стойкость (если его не более 3 %) и снижает относительную плотность, так как он легче, чем алюминий.
Алюминиевые сплавы по способу изготовления из них изделий делят на две группы: деформируемые и литейные. Такое деление отражает основные технологические свойства сплавов: деформируемые имеют высокую пластичность в нагретом состоянии, а литейные-хорошую жидкотекучесть. Для получения этих свойств в алюминий вводят разные легирующие элементы и в неодинаковом количестве.
Сырьем для получения сплавов обоего типа являются не только технически чистый алюминий, о котором речь шла выше, но также и двойные сплавы алюминия с кремнием, которые содержат 10-13 % Si, и несколько отличаются друг от друга количеством примесей железа, кальция, титана и марганца. Общей содержание примесей в них 0.5-1.7 %. Эти сплавы называют силуминами и маркируют у нас в стране СИЛ-00 (наиболее чистый по примесей), СИЛ-0, СИЛ-1 и СИЛ-2. Поставляют их в виде гладких чушек или чушек с пережимами массой 6 и 14 кг. Силумин в чушках тоже является товаром на мировом рынке.
Для получения деформируемых сплавов в алюминий вводят в основном растворимые в нем легирующие элементы в количестве, не превышающем предел их растворимости при высокой температуре. В них не должно эвтектики, которая легкоплавка и резко снижает пластичность.
Деформируемые сплавы при нагреве под обработку давлением должны иметь гомогенную структуру твердого раствора, обеспечивающую наибольшую пластичность и наименьшую прочность. Это и обусловливает их хорошую обрабатываемость давлением.
Основными легирующими элементами в различных деформируемых сплавах является медь, магний, марганец и цинк, кроме того, в сравнительно небольших количествах вводят также кремний, железо, никель и некоторые другие элементы.
Деформируемые алюминиевые сплавы делят на упрочняемые и неупрочняемые. Это наименование отражает способность или неспособность сплава заметно повышать прочность при термической обработке.
Структурные превращения, происходящие в алюминиевых сплавах при их термической обработке, существенно отличается от таковых в стали потому, что алюминий не имеет аллотропического превращения. В них повышение прочности может происходить только за счет процессов, связанных с выделением из перенасыщенного в результате закалки твердого раствора каких-то упрочняющих фаз.
Характерными упрочняемыми сплавами являются дюралюминии-сплавы алюминия с медью, которые содержат постоянные примеси кремния и железа и могут быть легированы магнием и марганцем. Количество меди в них находится в пределах 2.2-7 %.
Название марок дюралюминия начинается буквой Д, затем идет цифра, которая не отражает химического состава, а представляет собой просто номер. В разное время было разработано много марок дюралюминия, но многие из них не нашли широкого применения. Сейчас промышленность выпускает пять основных марок дюралюминия, химический состав которых приведен в таблице.
| | | | |
| Дюралюми-| ний | | |
К-во Просмотров: 615
Бесплатно скачать Реферат: Свойства алюминия
|