Реферат: Технология получения монокристаллического Si

Значительное влияние на выход ТХС оказывает присутствие примесей воды и кислорода в исходных компонентах. Эти примеси, окисляя порошок кремния, приводят к образованию на его поверх­ности плотных слоев SiO 2 , препятствующих взаимодействию крем­ния с хлористым водородом и соответственно снижающих выход ТХС. Так, например, при увеличении содержания Н2 О в НС l с 0,3 до 0,4 % выход ТХС уменьшается с 90 до 65 %. В связи с этим хлористый водород, а также порошок кремния перед синтезом ТХС проходят тщательную осушку и очистку от кислорода.

Образующаяся в процессе синтеза ТХС парогазовая смесь посту­пает в зону охлаждения, где ее быстро охлаждают до 40 130 ° С, в результате чего выделяются в виде пыли твердые частицы примеси (хлориды железа, алюминия и др.), которые вместе с частицами непрореагировавшего кремния и полихлоридов ( Sin Cl 2 n +2 ) затем отделяются с помощью фильтров. После очистки от пыли (являю­щейся взрывоопасным продуктом) парогазовая смесь поступает на конденсацию при температуре 70 ° С. Происходит отделение SiHCl 3 и SiCl 4 (температуры кипения 31,8 и 57,2 ° С соответственно) от водорода и НС l (температура кипения 84 ° С). Полученная в ре­зультате конденсации смесь состоит в основном из ТХС (до 90 95 %), остальное тетрахлорид кремния, который отделяют затем ректификацией. Выделяемый в результате разделения тетрахлорид кремния в дальнейшем используют для производства силиконов, кварцевого стекла, а также для получения трихлорсилана путем дополнительного гидрирования в присутствии катализатора.

Очистка ТХС

Получаемый ТХС содержит большое количество примесей, очист­ка от которых представляет сложную задачу. Наиболее эффектив­ным методом очистки является ректификация, однако осуществить полную и глубокую очистку от примесей, имеющих различную фи­зико-химическую природу, применяя только ректификацию, слож­но. В связи с этим для увеличения глубины очистки по ряду приме­сей применяются дополнительные меры.

Так, например, для примесей, трудно очищаемых кристаллиза­ционными методами (бор, фосфор, углерод), необходима наиболее глубокая очистка ТХС. Поэтому для повышения эффективности очистки эти микропримеси переводят в нелетучие или комплексные соединения. Для очистки от бора, например, пары ТХС пропускают через алюминиевую стружку при 120 ° С. Поверхность стружки, поглощая бор, приводит к почти полной очистке от него ТХС. По­бочно образующийся хлорид алюминия далее возгоняют при темпе­ратере 220 250 ° С, а затем отделяют фракционной конденсацией.

Кроме алюминия могут быть использованы серебро, медь или сурь­ма. Добавка меди к алюминию позволяет одновременно очищать ТХС от мышьяка и сурьмы. Повысить эффективность очистки от бора позволяет также введение в ТХС пента- или оксихлоридев фос­фора. При этом образуются нелетучие комплексные соединения фос­фора с бором состава РС l 5 · ВС l 3 или РОС13 · ВС l 3 , которые затем отде­ляют ректификацией. Перевод бора в нелетучие соединения может быть также осуществлен путем добавления в ТХС трифенилхлор­метана (или триметиламина, ацетонитрила, аминокислоты, кетона и т. д.), приводящего к образованию с бором комплекса типа (С6 Н5 )3 С · ВС l 3 , который затем удаляют ректификацией. Очистку от борсодержащих примесей осуществляют также адсорбцией в реак­торах, заполненных алюмогелем или другими гелями ( TiO 2 , Fe 2 O 3 , Mg ( OH )2 ) с последующей ректификацией ТХС.

Для очистки от фосфора ТХС насыщают хлором с переводом трихлорида фосфора в пентахлорид. При добавлении в раствор хло­рида алюминия образуется нелетучее соединение РС l 5 · А l С l 3 , кото­рое затем удаляется ректификацией.

Контроль чистоты получаемого после очистки ТХС осуществля­ют методами ИК-спектроскопии, хроматографии, а также измере­нием типа и величины проводимости тестовых образцов кремния, получаемых из проб ТХС. Тестовый метод существует в двух модифи­кациях. В соответствии с первой на лабораторной установке осаж­дением из газовой фазы получают поликристаллический стержень кремния диаметром 10 20 мм. Далее из него бестигельной зонной плавкой выращивают контрольный монокристалл, по типу прово­димости и удельному сопротивлению которого судят о чистоте ТХС. Для определения концентрации доноров проводят один проход зоны в аргоне или вакууме и получают монокристалл n -типа, по удельному сопротивлению которого судят о чистоте по донорам (удельное сопротивление по донорам); для определения концентра­ции бора приводят 5 15 проходов зоны в вакууме, в результате чего получают монокристалл р-типа, по удельному сопротивлению которого судят о чистоте по бору (удельное сопротивление по бору).

По второй модификации тестового метода монокристалл крем­ния выращивают непосредственно из газовой фазы на монокристал­лический стержень в миниатюрном кварцевом реакторе и далее измеряют его удельное сопротивление.

Остаточное содержание микропримесей в ТХС после очистки не должно превышать, % мас: бора 3 · 10-8 , фосфора 1 · 10-7 , мышьяка 5 · 10-10 , углерода (в виде углеводородов) 5 · 10-7 .

По электрическим измерениям тестовых образцов остаточное содержание доноров должно обеспечивать удельное сопротивление кремния n -типа не менее 5000 Ом · см, а по акцепторам у кристаллов р-типа не менее 8000 Ом · см.

Другие методы получения газовых соединений Si

Технически и экономически конкурентоспособным по сравнению с рассмотренным является также метод получения поликристаллического кремния путем разложения силана SiH 4 высокой чистоты. процесс получения которого сводится к следующему.

Путем сплавления технического кремния и магния в водороде при 550 ° С получают силицид магния Mg 2 Si , который затем разлагают хлоридом аммония по реакции

Mg 2 Si +4 NH 4 Cl SiH 4 +2 MgCl 2 + +4 NH 3 (4)

в среде жидкого аммиака при температуре 30 ° С. Отде­ляемый моносилан далее поступает на ректификационную очистку, в результате которой содержание примесей снижается до уровня менее 10-8 10-7 %.

Известны и другие методы получения летучих соединений крем­ния хлорирование или иодирование технического кремния, про­дуктами которых являются тетрахлорид SiCl 4 или тетраиодид крем­ния SiJ 4 .

Восстановление очищенного трихлорсилана

Восстановление очищенного трихлорсилана и в результате этого получение поликристаллического кремния проводят в атмосфере водорода

SiHCl 3(Г) + H 2(Г) Si ( T ) + 3 HCl (Г) (5)

на поверхности разогретых кремниевых стержней основах диаметром 4 8 мм (иногда до 30 мм), получаемых методом выращива­ния с пьедестала. В некоторых технологиях вместо цилиндрических стержней используются пластинчатые (толщиной 1 5 мм и шириной 30 100 мм) с большей площадью осаждения. Материалом для выращивания стержней служит высококачественный поликристаллический кремний. Поверхность стержней основ подвергают ультра­звуковой очистке, травлению в смеси кислот (например, HF + + HNO 3 ), отмывке и сушке. К стержням основам для получения вы­сококачественного поликристаллического кремния предъявляются высокие требования по чистоте: они должны иметь удельное сопро­тивление по донорам >700 Ом · см и по бору >5000 Ом · см.

Из стержней изготовляют электронагреватели (например, П-об­разной формы) и их нагрев осуществляют пропусканием электри­ческого тока. По мере роста диаметра стержней силу тока посте­пенно увеличивают.

Выбор условий водородного восстановления ТХС осуществляют на основе оптимальной взаимосвязи следующих параметров про­цесса:

· равновесной степени превращения SiHCl 3 в Si , кристалли­ческой структуры получаемых стержней,

· температуры процесса,

· энергозатрат,

· мольного отношения Н2 : SiHCl 3 ,

· скорости осаждения кремния.

Оптимальными условиями процесса восстановления считают температуру 1100 1150 ° С, мольное отношение Н2 : SiHCl 3 в пре­делах 5 15, плотность подачи ТХС 0,004 моль/(ч · см2 ). При тем­пературе стержней ниже оптимальной повышается степень превра­щения ТХС в тетрахлорид кремния и уменьшается выход кремния. Увеличение температуры приводит к существенному возрастанию энергозатрат. При оптимальном мольном отношении Н2 : SiHCl 3 = 5 15 стержни имеют плотную мелкокристаллическую структуру и относительно ровную поверхность. За пределами этих отношений образуется неровная поверхность, структура стержней становится крупнокристаллической с включениями газовых пор, которые при последующем плавлении поликремния в процессе выращивания кристаллов приводят к бурлению и разбрызгиванию расплава.

Количество стержней, устанавливаемых в различных промыш­ленных реакторах, колеблется от 2 до 16, длина каждого стержня составляет до 2 м, конечный диаметр 150 250 мм. За счет взаимного нагрева стержней скорость осаждения кремния в многостержневых аппаратах выше, чем в двухстержневых; скорость роста диаметра стержней достигает 0,5 мм/ч, энергозатраты составляют 3000 кВт · ч/кг.

Для повышения чистоты получаемого кремния производят тща­тельную очистку водорода, реакторы делают из специальных ста­лей, а также защищают их поверхность от взаимодействия с газовой средой путем введения дополнительных кварцевых (кремниевых) колпаков, отделяющих реакционный объем от стенок реактора. Хорошей защитой стенок реактора является покрытие их защитны­ми пленками, например полихлорсиланом.

Получение поликристаллических кремния из моносилана SiH 4

Получение поликристаллических стержней кремния путем термического разложения моносилана SiH 4 производится по аналогич­ной методике при температурах 1000 ° С. Образующийся при раз­ложении водород SiH 4(Г) -> Si ( T ) + 2Н2(Г) обладает высокой сте­пенью чистоты и используется в сопутствующем производстве. По­лучаемый по этой технологии поликремний обладает более высокой степенью чистоты, чем кремний, получаемый восстановлением ТХС.

Извлечение кремния из SiCl 4 и SiJ 4 осуществляют восстановле­нием тетрахлорида кремния цинком либо термической диссоциацией тетраиодида.

Получаемые поликристаллические стержни перед использова­нием в процессах выращивания монокристаллов методом Чохраль­ского разламывают на удобные для загрузки в тигель куски или разрезают на мерные заготовки. Для процесса бестигельной зон­ной плавки стержни обрабатывают под нужный диаметр шлифовкой. Удаление поверхностных слоев, обогащенных примесями и газами, кроме того, предотвращает разбрызгивание кремния из расплавлен­ной зоны.

К-во Просмотров: 387
Бесплатно скачать Реферат: Технология получения монокристаллического Si